Civil Engineering Department, College of Engineering, University of Al-Qadisiyah, Iraq


This paper presents a numerical simulation of the structural response of reinforced concrete (RC) beams under elevated temperature using the commercial finite element package ABAQUS. A numerical model is firstly suggested by selecting the appropriate geometrical and material properties of the RC beam model at elevated temperature. Thereafter, the suggested numerical model was validated against the experimental tests conducted in this study. The validation results in terms of temperatures- time histories; load-mid span deflection of the RC beams have confirmed the accuracy of the suggested numerical model. The validated numerical model was implemented in conducting a parametric study to investigate the effects of two important parameters on the behavior and failure of RC beams under elevated temperature. These parameters are the effect of the high ranges of elevated temperatures; and the effect of heating rate. The parametric study results have revealed that the failure load and the ductility of RC beams under elevated temperature are not considerably influenced by changing the heating rate. It has also been concluded that the ultimate load capacities of RC beams have considerably decreased by 55.49%, 74.72%, and 81.31% comparing with the control RC beam when they exposed to temperature values of 600 ºC, 700 ºC, and 800ºC respectively. These conclusions may be used in the design of RC beams subjected to fire induced temperature.