Document Type : Review Paper

Author

Department of Mechanical Engineering, College of Engineering, University of Al-Qadisiyah, Room 16, Al Diwaniyah, Iraq

10.30772/qjes.2023.141506.1003

Abstract

The dissipation of excessive heat flux is presently a significant issue that needs to be addressed due to the use of microdevices in fields such as nuclear energy, electronic devices, aerospace engineering, building engineering, and more. Because their increased heat transfer and compact size, microchannel cooling systems have become an effective way to manage the temperature of microdevices and equipment upgrades. However, due to the increasing demands placed on microdevices for thermal load, controlling the temperature, and conserving energy, efficient heat exchangers, in particular microchannels, are attracting a growing amount of interest. A key passive technique for successfully increasing the heat transfer of the microchannel cooling system and improving the performance of microchannels is channel shape optimization. Therefore, the characteristics of microchannel geometry from prior research has been reviewed, categorized, and summed up in this article. The analysis focuses primarily on structural features and microchannel geometry attributes that enhance the impact of pressure drop and heat transfer. It also presents the relationship between boiling heat transfer and the geometrical features of microchannel flow and discusses the potential study directions for microchannel geometry design. The current review of microchannels will provide researchers working on these microchannel components with specialized expertise. In an effort to improve the impact of heat transfer, this study reviews, categorizes, and summarizes the characteristics of prior studies' microchannel geometry.

Keywords

[1]    Mooneghi, M.A. and Kargarmoakhar, R., 2016. Aerodynamic mitigation and shape optimization of buildings. Journal of building engineering, 6, pp.225-235
https://doi.org/10.1016/j.jobe.2016.01.009
[2]   Stone, H.A. and Kim, S., 2001. Microfluidics: basic issues, applications, and challenges. American Institute of Chemical Engineers. AIChE Journal, 47(6), p.1250.
https://doi.org/10.1002/aic.690470602
[3]   Garrett, D.E., 2012. Chemical engineering economics. Springer Science & Business Media.
https://doi.org/10.1007/978-94-011-6544-0
[4]   Nasiri, R., Shamloo, A., Ahadian, S., Amirifar, L., Akbari, J., Goudie, M.J., Lee, K., Ashammakhi, N., Dokmeci, M.R., Di Carlo, D. and Khademhosseini, A., 2020. Microfluidic‐based approaches in targeted cell/particle separation based on physical properties: Fundamentals and applications. Small, 16(29), p.2000171.
https://doi.org/10.1002/smll.202000171
[5]   Whicker, F.W. and Schultz, V., 1982. Radioecology: nuclear energy and the environment (Vol. 1, pp. 75-150). Boca Raton, FL: CRC press.
[6]   Creagh, L.T. and McDonald, M., 2003. Design and performance of inkjet print heads for non-graphic-arts applications. MRS bulletin, 28(11), pp.807-811.
https://doi.org/10.1557/mrs2003.229
[7]   Shur, M., 1996. Introduction to electronic devices. J. Wiley.
[8]   Ma, K.Q. and Liu, J., 2007. Heat-driven liquid metal cooling device for the thermal management of a computer chip. Journal of Physics D: Applied Physics, 40(15), p.4722.
https://doi 10.1088/0022-3727/40/15/055
[9]   Yu, Z.J., Haghighat, F. and Fung, B.C., 2016. Advances and challenges in building engineering and data mining applications for energy-efficient communities. Sustainable Cities and Society, 25, pp.33-38.
https://doi.org/10.1016/j.scs.2015.12.001
[10]  Huang, Y., Lan, Y., Thomson, S.J., Fang, A., Hoffmann, W.C. and Lacey, R.E., 2010. Development of soft computing and applications in agricultural and biological engineering. Computers and electronics in agriculture, 71(2), pp.107-127.
https://doi.org/10.1016/j.compag.2010.01.001
[11]  Khadra, K., Angot, P., Parneix, S. and Caltagirone, J.P., 2000. Fictitious domain approach for numerical modelling of Navier–Stokes equations. International journal for numerical methods in fluids, 34(8), pp.651-684.
https://doi.org/10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D
[12]  Siva, V.M., Pattamatta, A. and Das, S.K., 2013. Investigation on flow maldistribution in parallel microchannel systems for integrated microelectronic device cooling. IEEE Transactions on Components, Packaging and Manufacturing Technology, 4(3), pp.438-450.
https://doi: 10.1109/TCPMT.2013.2284291
[13]  Moharana, M.K., Peela, N.R., Khandekar, S. and Kunzru, D., 2011. Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges. Renewable and Sustainable Energy Reviews, 15(1), pp.524-533.
https://doi.org/10.1016/j.rser.2010.08.011
[14]  Qu, W., Mala, G.M. and Li, D., 2000. Heat transfer for water flow in trapezoidal silicon microchannels. International journal of heat and mass transfer, 43(21), pp.3925-3936.
https://doi.org/10.1016/S0017-9310(00)00045-4
[15]  Ghamari, M. and Ratner, A., 2017. Combustion characteristics of colloidal droplets of jet fuel and carbon based nanoparticles. Fuel, 188, pp.182-189.
https://doi.org/10.1016/j.fuel.2016.10.040
[16]  Koo, J. and Kleinstreuer, C., 2005. Laminar nanofluid flow in microheat-sinks. International journal of heat and mass transfer, 48(13), pp.2652-2661.
https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.029
[17]  Zhu, Y., Antao, D.S., Chu, K.H., Chen, S., Hendricks, T.J., Zhang, T. and Wang, E.N., 2016. Surface structure enhanced microchannel flow boiling. Journal of Heat Transfer, 138(9).
https://doi.org/10.1115/1.4033497
[18]  Kim, Y.J., Joshi, Y.K., Fedorov, A.G., Lee, Y.J. and Lim, S.K., 2010. Thermal characterization of interlayer microfluidic cooling of three-dimensional integrated circuits with nonuniform heat flux.
https://doi.org/10.1115/1.4000885
[19]  Tang, J., Liu, Y., Huang, B. and Xu, D., 2022. Enhanced heat transfer coefficient of flow boiling in microchannels through expansion areas. International Journal of Thermal Sciences, 177, p.107573.
https://doi 10.1016/j.ijthermalsci.2022.107573
[20]  Kandlikar, S.G., Colin, S., Peles, Y., Garimella, S., Pease, R.F., Brandner, J.J. and Tuckerman, D.B., 2013. Heat transfer in microchannels—2012 status and research needs. Journal of Heat Transfer, 135(9), p.091001.
https://doi.org/10.1115/1.4024354
[21]  Alfaryjat, A.A., Mohammed, H.A., Adam, N.M., Ariffin, M.K.A. and Najafabadi, M.I., 2014. Influence of geometrical parameters of hexagonal, circular, and rhombus microchannel heat sinks on the thermohydraulic characteristics. International Communications in Heat and Mass Transfer, 52, pp.121-131.
https://doi.org/10.1016/j.icheatmasstransfer.2014.01.015
[22]  Chen, X., Ye, H., Fan, X., Ren, T. and Zhang, G., 2016. A review of small heat pipes for electronics. Applied Thermal Engineering, 96, pp.1-17.
https://doi.org/10.1016/j.applthermaleng.2015.11.048
[23]  Wang, Y. and Sefiane, K., 2012. Effects of heat flux, vapour quality, channel hydraulic diameter on flow boiling heat transfer in variable aspect ratio micro-channels using transparent heating. International Journal of Heat and Mass Transfer, 55(9-10), pp.2235-2243.
https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.044
[24]  Kandlikar, S.G. and Hayner, C.N., 2009. Liquid cooled cold plates for industrial high-power electronic devices—thermal design and manufacturing considerations. Heat transfer engineering, 30(12), pp.918-930.
https://doi.org/10.1080/01457630902837343
[25]  Yadav, V., Kumar, R. and Narain, A., 2018. Mitigation of flow maldistribution in parallel microchannel heat sink. IEEE transactions on components, packaging and manufacturing technology, 9(2), pp.247-261.
[26]  Thakkar, K., Kumar, K. and Trivedi, H., 2014. Thermal & Hydraulic Characteristics of Single phase flow in Mini-channel for Electronic cooling–Review. Int. J. Innovative Research in Science, Engineering and Technology, 3(2), pp.9726-9733.
[27]  Nilpueng, K., Keawkamrop, T., Ahn, H.S. and Wongwises, S., 2018. Effect of chevron angle and surface roughness on thermal performance of single-phase water flow inside a plate heat exchanger. International Communications in Heat and Mass Transfer, 91, pp.201-209.
https://doi.org/10.1016/j.icheatmasstransfer.2017.12.009
[28]  Panigrahi, P.K., 2016. Transport phenomena in microfluidic systems. John Wiley & Sons.
https://doi.org/10.1002/9781118298428
[29]  Guichet, V., Delpech, B. and Jouhara, H., 2023. Experimental investigation, CFD and theoretical modeling of two-phase heat transfer in a three-leg multi-channel heat pipe. International Journal of Heat and Mass Transfer, 203, p.123813.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123813
[30]  Kazi, S.N., 2023. Heat Transfer-Fundamentals, Enhancement and Applications.
https://doi.org/10.5772/intechopen.97951
[31]  Schlichting, H. and Gersten, K., 2016. Boundary-layer theory. springer.
https://doi.org/10.1007/978-3-662-52919-5
[32]  Reynolds, O., 1883. XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philosophical Transactions of the Royal society of London, (174), pp.935-982.
https://doi.org/10.1098/rstl.1883.0029
[33]  Dmitrenko, A.V., 2022. Theoretical calculation of the laminar–turbulent transition in the round tube on the basis of stochastic theory of turbulence and equivalence of measures. Continuum Mechanics and Thermodynamics, pp.1-18.
https://doi.org/10.1007/s00161-022-01125-4
[34]  Müller, U. and Bühler, L., 2001. Magnetofluiddynamics in channels and containers. Springer Science & Business Media.
https://doi.org/10.1007/978-3-662-04405-6
[35]  Brill, J.P., 1987. Multiphase flow in wells. Journal of petroleum technology, 39(01), pp.15-21.
https://doi.org/10.2118/16242-PA
[36]  Darbyshire, A.G. and Mullin, T., 1995. Transition to turbulence in constant-mass-flux pipe flow. Journal of Fluid Mechanics, 289, pp.83-114.
https://doi.org/10.1017/S0022112095001248
[37]  Hovland, M., Gardner, J.V. and Judd, A.G., 2002. The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids, 2(2), pp.127-136.
https://doi.org/10.1046/j.1468-8123.2002.00028.x
[38]  Boyd, E.A., 1971. Fluid Mechanics. VL Streeter. McGraw-Hill, 1971. 751 pp.£ 6. The Aeronautical Journal, 75(727), pp.484-484.
https://doi.org/10.1017/S000192400004584X
[39]  Estakhrsar, M.H. and Rafee, R., 2016. Effects of wavelength and number of bends on the performance of zigzag demisters with drainage channels. Applied Mathematical Modelling, 40(2), pp.685-699.
https://doi.org/10.1016/j.apm.2015.08.023
[40]  Beckett, F.M., Mader, H.M., Phillips, J.C., Rust, A.C. and Witham, F., 2011. An experimental study of low-Reynolds-number exchange flow of two Newtonian fluids in a vertical pipe. Journal of Fluid Mechanics, 682, pp.652-670.
https://doi.org/10.1017/jfm.2011.264
[41]  McEligot, D.M., Ormand, L.W. and Perkins Jr, H.C., 1966. Internal low Reynolds-number turbulent and transitional gas flow with heat transfer.
https://doi.org/10.1115/1.3691521
[42]  Everts, M. and Meyer, J.P., 2018. Heat transfer of developing and fully developed flow in smooth horizontal tubes in the transitional flow regime. International Journal of Heat and Mass Transfer, 117, pp.1331-1351.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.071
[43]  Metzner, A.B. and Reed, J.C., 1955. Flow of non‐newtonian fluids—correlation of the laminar, transition, and turbulent‐flow regions. Aiche journal, 1(4), pp.434-440.
https://doi.org/10.1002/aic.690010409
[44]  Tu, J., Yeoh, G.H. and Liu, C., 2018. Computational fluid dynamics: a practical approach. Butterworth-Heinemann.
https://doi.org/10.1016/C2010-0-67980-6
[45]  Ghidossi, R., Veyret, D. and Moulin, P., 2006. Computational fluid dynamics applied to membranes: State of the art and opportunities. Chemical Engineering and Processing: Process Intensification, 45(6), pp.437-454.
https://doi.org/10.1016/j.cep.2005.11.002
[46]  Jankowski, T.A., 2009. Minimizing entropy generation in internal flows by adjusting the shape of the cross-section. International Journal of Heat and Mass Transfer, 52(15-16), pp.3439-3445.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.016
[47]  Altemani, C.A.C. and Sparrow, E.M., 1980. Turbulent heat transfer and fluid flow in an unsymmetrically heated triangular duct.
https://doi.org/10.1115/1.3244357
[48]  Giustolisi, O., 2004. Using genetic programming to determine Chezy resistance coefficient in corrugated channels. Journal of Hydroinformatics, 6(3), pp.157-173.
https://doi.org/10.2166/hydro.2004.0013
[49]  Garimella, S., 2004. Condensation flow mechanisms in microchannels: basis for pressure drop and heat transfer models. Heat Transfer Engineering, 25(3), pp.104-116.
https://doi.org/10.1080/01457630490280489
[50]  Kandlikar, S.G., Schmitt, D., Carrano, A.L. and Taylor, J.B., 2005. Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels. Physics of Fluids, 17(10), p.100606.
https://doi.org/10.1063/1.1896985
[51]  Okab, A.K., Hasan, H.M., Hamzah, M., Egab, K., Al-Manea, A. and Yusaf, T., 2022. Analysis of heat transfer and fluid flow in a microchannel heat sink with sidewall dimples and fillet profile. International Journal of Thermofluids, 15, p.100192.
https://doi.org/10.1016/j.ijft.2022.100192
[52]  Bahrami, M., Yovanovich, M.M. and Culham, J.R., 2007. A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section. International Journal of Heat and Mass Transfer, 50(13-14), pp.2492-2502.
https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.019
[53]  Fung, C.K. and Majnis, M.F., 2019. Computational Fluid Dynamic Simulation Analysis of Effect of Microchannel Geometry on Thermal and Hydraulic Performances of Micro Channel Heat Exchanger. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 62(2), pp.198-208.
[54]  Debtera, B., Prabhu Sundramurthy, V. and Neme, I., 2021. Computational Fluid Dynamics Simulation and Analysis of Fluid Flow in Pipe: Effect of Fluid Viscosity. Journal of Computational and Theoretical Nanoscience, 18(3), pp.805-810.
https://doi.org/10.1166/jctn.2021.9680
[55]  Bahrami, M., Yovanovich, M.M. and Culham, J.R., 2005, January. Pressure drop of fully-developed, laminar flow in microchannels of arbitrary cross-section. In International Conference on Nanochannels, Microchannels, and Minichannels (Vol. 41855, pp. 269-280).
https://doi.org/10.1115/1.2234786
[56]  Rawool, A.S., Mitra, S.K. and Kandlikar, S.G., 2006. Numerical simulation of flow through microchannels with designed roughness. Microfluidics and nanofluidics, 2, pp.215-221.
https://doi.org/10.1007/s10404-005-0064-5
[57]  Bahrami, M., Yovanovich, M.M. and Culham, J.R., 2006. Pressure drop of fully developed, laminar flow in rough microtubes.
https://doi.org/10.1115/1.2175171
[58]  McCormack, M., Fang, F. and Zhang, J., 2021. Numerical Analysis of Microchannels Designed for Heat Sinks. Nanomanufacturing and Metrology, pp.1-16.
https://doi.org/10.1007/s41871-021-00118-2
[59]  Parida, P.R., 2007. Experimental investigation of heat transfer rate in micro-channels. Louisiana State University and Agricultural & Mechanical College.
https://doi.org/10.31390/gradschool_theses.849
[60]  Akbari, M., Sinton, D. and Bahrami, M., 2009. Pressure drop in rectangular microchannels as compared with theory based on arbitrary cross section. Journal of Fluids Engineering, 131(4).
https://doi.org/10.1115/1.3077143
[61]  Hetsroni, G., Mosyak, A., Pogrebnyak, E. and Yarin, L.P., 2005. Heat transfer in micro-channels: Comparison of experiments with theory and numerical results. International Journal of Heat and Mass Transfer, 48(25-26), pp.5580-5601.
https://doi.org/10.1016/j.ijheatmasstransfer.2005.05.041
[62]  Wang, G., Hao, L. and Cheng, P., 2009. An experimental and numerical study of forced convection in a microchannel with negligible axial heat conduction. International Journal of Heat and Mass Transfer, 52(3-4), pp.1070-1074.
https://doi:10.1016/j.ijheatmasstransfer.2008.06.038
[63]  Garimella, S.V., Fleischer, A.S., Murthy, J.Y., Keshavarzi, A., Prasher, R., Patel, C., Bhavnani, S.H., Venkatasubramanian, R., Mahajan, R., Joshi, Y. and Sammakia, B., 2008. Thermal challenges in next-generation electronic systems. IEEE Transactions on Components and Packaging Technologies, 31(4), pp.801-815.
https://doi.org/10.1109/TCAPT.2008.2001197
[64]  Beck, J., Palmer, M., Inman, K., Wohld, J., Cummings, M., Fulmer, R., Scherer, B. and Vafaei, S., 2022. Heat Transfer Enhancement in the Microscale: Optimization of Fluid Flow. Nanomaterials, 12(20), p.3628.
https://doi.org/10.3390/nano12203628
[65]  Pryor, R.W., 2009. Multiphysics modeling using COMSOL®: a first principles approach. Jones & Bartlett Publishers.
[66]  Nevey, S., The ANSYS Fluent package combines deep physics and years of simulation development expertise to solve CFD challenges—right out of the box.
[67]  Alawadhi, E.M., 2014. Finite element simulations using ANSYS CRC Press.
https://doi.org/10.1201/9781439801611
[68]  Gupta, N., Bhardwaj, N., Khan, G.M. and Dave, V., 2020. Global trends of computational fluid dynamics to resolve real world problems in the contemporary era. Current Biochemical Engineering, 6(3), pp.136-155.
https://doi.org/10.2174/2212711906999200601121232
[69]  Xie, X., Zhang, L., Zhu, L., Li, Y., Hong, T., Yang, W. and Shan, X., 2023. State of the Art and Perspectives on Surface-Strengthening Process and Associated Mechanisms by Shot Peening. Coatings, 13(5), p.859.
https://doi.org/10.3390/coatings13050859
[70]  Li, Q., Yu, G., Liu, S. and Zheng, S., 2012. Application of computational fluid dynamics and fluid structure interaction techniques for calculating the 3D transient flow of journal bearings coupled with rotor systems. Chinese Journal of Mechanical Engineering, 25(5), pp.926-932.
https://doi.org/10.3901/CJME.2012.05.926
[71]  Debtera, B., Prabhu Sundramurthy, V. and Neme, I., 2021. Computational Fluid Dynamics Simulation and Analysis of Fluid Flow in Pipe: Effect of Fluid Viscosity. Journal of Computational and Theoretical Nanoscience, 18(3), pp.805-810.
https://doi.org/10.1166/jctn.2021.9680
[72]  Brunton, S.L., Proctor, J.L. and Kutz, J.N., 2016. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences, 113(15), pp.3932-3937.
https://doi.org/10.1073/pnas.1517384113
[73]  Rozon, B.J., 1989, February. A generalized finite volume discretization method for reservoir simulation. In SPE Symposium on Reservoir Simulation. OnePetro.
https://doi.org/10.2118/18414-MS
[74]  Insperger, T. and Stépán, G., 2004. Updated semi‐discretization method for periodic delay‐differential equations with discrete delay. International journal for numerical methods in engineering, 61(1), pp.117-141.
https://doi.org/10.1002/nme.1061
[75]  Franke, O.L., Reilly, T.E. and Bennett, G.D., 1987. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems: an introduction.
https://doi.org/10.3133/twri03B5
[76]  Pegues, J.W., Shao, S., Shamsaei, N., Sanaei, N., Fatemi, A., Warner, D.H., Li, P. and Phan, N., 2020. Fatigue of additive manufactured Ti-6Al-4V, Part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects. International Journal of Fatigue, 132, p.105358.
https://doi.org/10.1016/j.ijfatigue.2019.105358
[77] Jain, S.C., 2000. Open-channel flow. John Wiley & Sons.
https://doi.org/10.1002/9781119664338
[78]  Moglen, G.E., 2022. Fundamentals of open channel flow. CRC Press.
https://doi.org/10.1201/9781003263630
[79]  Whitby, M. and Quirke, N., 2007. Fluid flow in carbon nanotubes and nanopipes. Nature nanotechnology, 2(2), pp.87-94.
https://doi.org/10.1038/nnano.2006.175
[80]  Wang, X.Q., Mujumdar, A.S. and Yap, C., 2006. Thermal characteristics of tree-shaped microchannel nets for cooling of a rectangular heat sink. International Journal of Thermal Sciences, 45(11), pp.1103-1112.
https://doi.org/10.1016/j.ijthermalsci.2006.01.010
[81]  Lee, S., 1995. Optimum design and selection of heat sinks. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 18(4), pp.812-817.
https://doi.org/10.1109/95.477468
[82]  Al-Hattab, T.A., Al-Moosawy, A.A. and Shaker, A.A., 2008. Heat transfer calculations of Non-developed steady laminar flow between parallel plates. The Iraqi Journal For Mechanical And Material Engineering, 8(1), pp.25-42.
[83]  Hasan, M.I., Rageb, A.A., Yaghoubi, M. and Homayoni, H., 2009. Influence of channel geometry on the performance of a counter flow microchannel heat exchanger. International Journal of Thermal Sciences, 48(8), pp.1607-1618.
https://doi.org/10.1016/j.ijthermalsci.2009.01.004
[84]  Nasir, B.A., 2013. Design of micro-hydro-electric power station. International Journal of Engineering and Advanced Technology, 2(5), pp.39-47.
[85]  Monadjemi, P., 1994. General formulation of best hydraulic channel section. Journal of Irrigation and Drainage Engineering, 120(1), pp.27-35.
https://doi.org/10.1061/(ASCE)0733-9437(1994)120:1(27)
[86]  French, R.H. and French, R.H., 1985. Open-channel hydraulics (p. 705). New York: McGraw-Hill.
[87]  Julien, P.Y. and Wargadalam, J., 1995. Alluvial channel geometry: theory and applications. Journal of Hydraulic Engineering, 121(4), pp.312-325.
https://doi.org/10.1061/(ASCE)0733-9429(1995)121:4(312)
[88]  May, R.W.P., 2003. Hydraulic design of side weirs. Thomas Telford.
https://doi.org/10.1680/hdosw.31678
[89]  Asadollahi, A., Esfahani, J.A. and Ellahi, R., 2019. Evacuating liquid coatings from a diffusive oblique fin in micro-/mini-channels: an application of condensation cooling process. Journal of Thermal Analysis and Calorimetry, 138(1), pp.255-263.
https://doi.org/10.1007/s10973-019-08243-3
[90]  Li, W. and Wu, Z., 2010. A general criterion for evaporative heat transfer in micro/mini-channels. International Journal of Heat and Mass Transfer, 53(9-10), pp.1967-1976.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.059
[91]  Hajialibabaei, M. and Saghir, M.Z., 2022. A critical review of the straight and wavy microchannel heat sink and the application in lithium-ion battery thermal management. International Journal of Thermofluids, p.100153.
https://doi.org/10.1016/j.ijft.2022.100153
[92]  Mu, Y.T., Chen, L., He, Y.L. and Tao, W.Q., 2015. Numerical study on temperature uniformity in a novel mini-channel heat sink with different flow field configurations. International Journal of Heat and Mass Transfer, 85, pp.147-157.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.093
[93]  Ghorbani, M., Yildiz, M., Gozuacik, D. and Kosar, A., 2016. Cavitating nozzle flows in micro-and minichannels under the effect of turbulence. Journal of Mechanical Science and Technology, 30, pp.2565-2581.
[94]  Mahmoud, N.S., Jaffal, H.M. and Imran, A.A., 2021. Performance evaluation of serpentine and multi-channel heat sinks based on energy and exergy analyses. Applied Thermal Engineering, 186, p.116475.
https://doi.org/10.1016/j.applthermaleng.2020.116475
[95]  Li, J., 2008. Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS.
[96]  Gunnasegaran, P., Mohammed, H.A., Shuaib, N.H. and Saidur, R., 2010. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. International communications in heat and mass transfer, 37(8), pp.1078-1086.
https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014
[97]  Schönfeld, F. and Hardt, S., 2004. Simulation of helical flows in microchannels. AIChE Journal, 50(4), pp.771-778.
https://doi.org/10.1002/aic.10071
[98]  Wang, H., Chen, Z. and Gao, J., 2016. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Applied Thermal Engineering, 107, pp.870-879.
https://doi.org/10.1016/j.applthermaleng.2016.07.039
[99]  Magnini, M. and Matar, O.K., 2020. Numerical study of the impact of the channel shape on microchannel boiling heat transfer. International Journal of Heat and Mass Transfer, 150, p.119322.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119322
[100] Jing, D. and He, L., 2019. Numerical studies on the hydraulic and thermal performances of microchannels with different cross-sectional shapes. International Journal of Heat and Mass Transfer, 143, p.118604.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118604
[101] Salimpour, M.R., Sharifhasan, M. and Shirani, E., 2013. Constructal optimization of microchannel heat sinks with noncircular cross sections. Heat Transfer Engineering, 34(10), pp.863-874.
https://doi.org/10.1080/01457632.2012.746552
[102] Sempértegui-Tapia, D.F. and Ribatski, G., 2017. The effect of the cross-sectional geometry on saturated flow boiling heat transfer in horizontal micro-scale channels. Experimental Thermal and Fluid Science, 89, pp.98-109.
https://doi.org/10.1016/j.expthermflusci.2017.08.001
[103] Goodarzi, M., Tlili, I., Tian, Z. and Safaei, M.R., 2019. Efficiency assessment of using graphene nanoplatelets-silver/water nanofluids in microchannel heat sinks with different cross-sections for electronics cooling. International Journal of Numerical Methods for Heat & Fluid Flow, 30(1), pp.347-372.
https://doi.org/10.1108/HFF-12-2018-0730
[104] Chen, Y., Zhang, C., Shi, M. and Wu, J., 2009. Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks. International Communications in Heat and Mass Transfer, 36(9), pp.917-920.
https://doi.org/10.1016/j.icheatmasstransfer.2009.06.004
[105] Yu, S. and Ameel, T.A., 2001. Slip-flow heat transfer in rectangular microchannels. International Journal of Heat and Mass Transfer, 44(22), pp.4225-4234.
https://doi.org/10.1016/S0017-9310(01)00075-8
[106] Agarwal, A., Bandhauer, T.M. and Garimella, S., 2010. Measurement and modeling of condensation heat transfer in non-circular microchannels. International journal of refrigeration, 33(6), pp.1169-1179.
https://doi.org/10.1016/j.ijrefrig.2009.12.033
[107] Alihosseini, Y., Azaddel, M.R., Moslemi, S., Mohammadi, M., Pormohammad, A., Targhi, M.Z. and Heyhat, M.M., 2021. Effect of liquid cooling on PCR performance with the parametric study of cross-section shapes of microchannels. Scientific Reports, 11(1), pp.1-12.
https://doi.org/10.1038/s41598-021-95446-0
[108] Song, J., Liu, F., Sui, Y. and Jing, D., 2021. Numerical studies on the hydraulic and thermal performances of trapezoidal microchannel heat sink. International Journal of Thermal Sciences, 161, p.106755.
https://doi.org/10.1016/j.ijthermalsci.2020.106755
[109] Khan, A.A., Kim, S.M. and Kim, K.Y., 2016. Multi-objective optimization of an inverse trapezoidal-shaped microchannel. Heat Transfer Engineering, 37(6), pp.571-580.
https://doi.org/10.1080/01457632.2015.1060772
[110] Hasan, M.I., Rageb, A.A., Yaghoubi, M. and Homayoni, H., 2009. Influence of channel geometry on the performance of a counter flow microchannel heat exchanger. International Journal of Thermal Sciences, 48(8), pp.1607-1618.
https://doi.org/10.1016/j.ijthermalsci.2009.01.004
[111] Shamsi, M.R., Akbari, O.A., Marzban, A., Toghraie, D. and Mashayekhi, R., 2017. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Physica E: Low-Dimensional Systems and Nanostructures, 93, pp.167-178.
https://doi.org/10.1016/j.physe.2017.06.015
[112] Li, X., Zou, C. and Qi, A., 2016. Experimental study on the thermo-physical properties of car engine coolant (water/ethylene glycol mixture type) based SiC nanofluids. International Communications in Heat and Mass Transfer, 77, pp.159-164.
https://doi.org/10.1016/j.icheatmasstransfer.2016.08.009
[113] Peyghambarzadeh, S.M., Hashemabadi, S.H., Hoseini, S.M. and Jamnani, M.S., 2011. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. International communications in heat and mass transfer, 38(9), pp.1283-1290.
https://doi.org/10.1016/j.icheatmasstransfer.2011.07.001
[114] Mohammad, D.A., Hasan, M.I. and Shkarah, A.J., 2021. Numerical investigation of the electric double-layer effect on the performance of microchannel heat exchanger at combined electroosmotic and pressure-driven flow. Al-Qadisiyah Journal for Engineering Sciences, 14(1).
https://doi.org/10.30772/qjes.v14i1.736
[115] Dede, E.M., Joshi, S.N. and Zhou, F., 2015. Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink. Journal of Mechanical Design, 137(11).
https://doi.org/10.1115/1.4030989
[116] Al-Yasiri, Q., Szabo, M. and Arıcı, M., 2022. A review on solar-powered cooling and air-conditioning systems for building applications. Energy Reports, 8, pp.2888-2907.
https://doi.org/10.1016/j.egyr.2022.01.172
[117] Ye, X., Zhu, H., Kang, Y. and Zhong, K., 2016. Heating energy consumption of impinging jet ventilation and mixing ventilation in large-height spaces: A comparison study. Energy and Buildings, 130, pp.697-708.
https://doi.org/10.1016/j.enbuild.2016.08.055
[118] Choubineh, N., Jannesari, H. and Kasaeian, A., 2019. Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system. Renewable and Sustainable Energy Reviews, 101, pp.103-111.
https://doi.org/10.1016/j.rser.2018.11.001
[119] Shrivastava, A., Jose, J.P.A., Borole, Y.D., Saravanakumar, R., Sharifpur, M., Harasi, H., Razak, R.A. and Afzal, A., 2022. A study on the effects of forced air-cooling enhancements on a 150 W solar photovoltaic thermal collector for green cities. Sustainable Energy Technologies and Assessments, 49, p.101782.
https://doi.org/10.1016/j.seta.2021.101782
[120] Rostami, S., Aghakhani, S., Hajatzadeh Pordanjani, A., Afrand, M., Cheraghian, G., Oztop, H.F. and Shadloo, M.S., 2020. A review on the control parameters of natural convection in different shaped cavities with and without nanofluid. Processes, 8(9), p.1011.
https://doi.org/10.3390/pr8091011
[121] Makki, A., Omer, S. and Sabir, H., 2015. Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renewable and sustainable energy reviews, 41, pp.658-684.
https://doi.org/10.1016/j.rser.2014.08.069
[122] Rahbar, N. and Esfahani, J.A., 2012. Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module. Desalination, 284, pp.55-61.
https://doi.org/10.1016/j.desal.2011.08.036
[123] Wang, C., Zhang, G., Li, X., Huang, J., Wang, Z., Lv, Y., Meng, L., Situ, W. and Rao, M., 2018. Experimental examination of large capacity liFePO4 battery pack at high temperature and rapid discharge using novel liquid cooling strategy. International Journal of Energy Research, 42(3), pp.1172-1182.
https://doi.org/10.1002/er.3916
[124] Dhar, P.L. and Singh, S.K., 2001. Studies on solid desiccant based hybrid air-conditioning systems. Applied Thermal Engineering, 21(2), pp.119-134.
https://doi.org/10.1016/S1359-4311(00)00035-1
[125] Mohsen, H.K. and Hamza, N., 2022. Investigation of laminar forced convection using a different shape of a heat sink. Al-Qadisiyah Journal for Engineering Sciences, 15(2).
https://doi.org/10.30772/qjes.v15i2.816
[126] Yu, H., Li, T., Zeng, X., He, T. and Mao, N., 2022. A Critical Review on Geometric Improvements for Heat Transfer Augmentation of Microchannels. Energies, 15(24), p.9474.
https://doi.org/10.3390/en15249474
[127] Ali, A.A., Hasan, M.I. and Adnan, G., 2018. NUMERICAL INVESTIGATION OF ROUGNESS EFFECTS ON HYDERDYNMIC AND THERMAL PERFORMANCE OF COUNTER FLOW MICROCHANNEL HEAT EXCHANGER. Al-Qadisiyah Journal for Engineering Sciences, 11(4), pp.426-445.
https://doi.org/10.30772/qjes.v11i4.571
[128] Lu, K., Wang, C., Wang, C., Fan, X., Qi, F. and He, H., 2023. Topological structures for microchannel heat sink applications–a review. Manufacturing Review, 10.
https://doi.org/10.1051/mfreview/2022035
[129] Su, Q., Chang, S., Song, M., Zhao, Y. and Dang, C., 2019. An experimental study on the heat transfer performance of a loop heat pipe system with ethanol-water mixture as working fluid for aircraft anti-icing. International Journal of Heat and Mass Transfer, 139, pp.280-292.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.015
[130] Sarbu, I. and Sebarchievici, C., 2013. Review of solar refrigeration and cooling systems. Energy and buildings, 67, pp.286-297.
https://doi.org/10.1016/j.enbuild.2013.08.022
[131] Gu, Z., Liu, H. and Li, Y., 2004. Thermal energy recovery of air conditioning system––heat recovery system calculation and phase change materials development. Applied Thermal Engineering, 24(17-18), pp.2511-2526.
https://doi.org/10.1016/j.applthermaleng.2004.03.017
[132] Boretti, A., 2010. Analysis of design of pure ethanol engines (No. 2010-01-1453). SAE Technical Paper.
https://doi.org/10.4271/2010-01-1453
[133] Preißinger, M., Schwöbel, J.A., Klamt, A. and Brüggemann, D., 2017. Multi-criteria evaluation of several million working fluids for waste heat recovery by means of Organic Rankine Cycle in passenger cars and heavy-duty trucks. Applied energy, 206, pp.887-899.
https://doi.org/10.1016/j.apenergy.2017.08.212