Document Type : Research Paper

Authors

Department of Mechanical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq

10.30772/qjes.2023.142855.1023

Abstract

The mechanical design of metals must deal with structures collapsing due to cracks occur in the material. This study focused on the edge crack at non-proportional cycle loading because it propagates quickly. This research attempted to determine two mathematical models that could predict the crack propagation rate for thin samples of aluminum alloy types 6061 and 5052 under constant tensile stresses and cyclic shear stress applied within the elastic limits of the material using “Griffith energy of dynamic fracture”. This was performed to evaluate if these models can predict crack growth rates and compare with the numerical results of a computer system in the ANSYS program R1 2021. The direction of the crack path was calculated and compared with the analytical program. The results of the two mathematical models in predicting the dynamic growth rate in the studied alloys gave low error rates to the numerical solution.

Keywords

  1.  J. Toribio, J.-C. Matos, and B. González, “Paris Law-Based Approach to Fatigue Crack Growth in Notched Plates under Tension Loading,” Procedia Struct. Integr., vol. 5, pp. 1299–1303, 2017, doi: https://doi.org/10.1016/j.prostr.2017.07.115.
  2. Y. Li, H. Wang, and D. Gong, “The interrelation of the parameters in the Paris equation of fatigue crack growth,” Eng. Fract. Mech., vol. 96, pp. 500–509, 2012, doi: https://doi.org/10.1016/j.engfracmech.2012.08.016.
  3. K. Tanaka and S. Matsuoka, “A tentative explanation for two parameters, C and m, in Paris equation of fatigue crack growth,” Int. J. Fract., vol. 13, pp. 563–583, 1977.
  4. F. A. Alshamma and B. A. Ahmed, “Strain Analysis of Surface Cracked Thin Flat Plate under Cycling Impact Loading Effect,” J. Eng., vol. 21, no. 4 SE-Articles, pp. 138–157, Dec. 2015, [Online]. Available: https://joe.uobaghdad.edu.iq/index.php/main/article/view/447
  5. H. H. Jasim, “Evaluation of Fatigue Behavior of Epoxy Coatings used for Potable Water Storage Tanks,” J. Eng., vol. 26, no. 3 SE-Articles, pp. 18–32, Mar. 2020, doi: 10.31026/j.eng.2020.03.02.
  6. B. V Kopei, O. I. Zvirko, T. P. Venhrynyuk, Z. V Slobodyan, and I. P. Shtoiko, “Elevation of the Fatigue Strength of Pump Rods as a Result of Treatment with a Special Medium,” Mater. Sci., vol. 56, no. 1, pp. 125–131, 2020, doi: 10.1007/s11003-020-00406-0.
  7. M. A. A. Al- Jaafari, “Heat Treatments Effects on the Fatigue Behaviors of Aluminum Nano-Composite Alloys,” Iraqi J. Sci., vol. 62, no. 11 SE-Physics, pp. 4397–4405, Dec. 2021, doi: 10.24996/ijs.2021.62.11(SI).20.
  8. R. Ibrahim Mhawes, “Study The Effect of Multi Axial Cycling Loading on The Dynamic Crack Propagation In Aluminum Plates,” Int. J. Mech. Eng., vol. 7, pp. 305–313, 2022.
  9. A. D. Assi, “Influence of Al2O3 Nanoparticles Addition to AA6082-T6 on Mechanical Properties by Stir Casting Technique,” IOP Conf. Ser. Mater. Sci. Eng., vol. 881, no. 1, p. 12081, 2020, doi: 10.1088/1757-899X/881/1/012081.
  10. L. Ewalds , H and H. Wanhill , R , J, FRACTURE MECHANICS, FOURTH. LONDON: Edwrd Arnold, 1989.
  11. H. Tada, H. A. Ernst, and P. C. Paris, “Westergaard stress functions for displacement-prescribed crack problems—I,” Int. J. Fract., vol. 61, no. 1, pp. 39–53, 1993, doi: 10.1007/BF00032338.
  12. C. T. Sun and Z.-H. Jin, “The Elastic Stress Field around a Crack Tip,” 2012, pp. 25–75. doi: 10.1016/B978-0-12-385001-0.00003-1.
  13. W. Thein, “Stress intensity factors determined by use of westergaard’s stress functions,” Eng. Fract. Mech., vol. 20, no. 1, pp. 65–73, 1984, doi: https://doi.org/10.1016/0013-7944(84)90115-2.
  14. J. knot, fundamentals of fracture mechanics, FIRST. LONDON, 1973.
  15. H. M. Hasoon, “Modified decomposition method for solving linear FredholmVolterra integral equations,” IOSR J. Math., vol. 12, no. 2, pp. 159–160, 2016, [Online]. Available: https://www.iosrjournals.org/iosr-jm/papers/Vol12-issue2/Version-1/R01221159160.pdf
  16. H. Tada, H. A. Ernst, and P. C. Paris, “Westergaard stress functions for displacement-prescribed cracks-II. Extension to mixed problems,” Int. J. Fract., vol. 67, pp. 151–167, 1994, [Online]. Available: https://api.semanticscholar.org/CorpusID:122965587
  17. H. Al-Quraishi, M. J. Lafta, and A. A. Abdulridha, “Direct Shear Behavior of Fiber Reinforced Concrete Elements,” J. Eng., vol. 24, no. 1 SE-Articles, pp. 231–248, Jan. 2018, doi: 10.31026/j.eng.2018.01.16.
  18. M. Y. Eisa, B. A. Abdulmajeed, and C. K. Hawee, “Kinetic Study of the Leaching of Iraqi Akashat Phosphate Ore Using Lactic Acid,” Al-Khwarizmi Eng. J., vol. 14, no. 1 SE-Articles, pp. 128–135, Apr. 2018, doi: 10.22153/kej.2018.08.006.
  19. F. Barras, M. Aldam, T. Roch, E. A. Brener, E. Bouchbinder, and J.-F. Molinari, “The emergence of crack-like behavior of frictional rupture: Edge singularity and energy balance,” Earth Planet. Sci. Lett., vol. 531, p. 115978, 2020, doi: https://doi.org/10.1016/j.epsl.2019.115978.
  20. H. P. Stüwe and R. Pippan, “On the energy balance of fatigue crack growth,” Comput. Struct., vol. 44, no. 1, pp. 13–17, 1992, doi: https://doi.org/10.1016/0045-7949(92)90218-O.
  21. S. E. A. B. Abdel-Rahman A. Ragab, Engineering Solid Mechanics, Fist. Boca Raton: 20 December 2019, 1998. doi: https://doi.org/10.1201/9780203757307.
  22. K. Sadananda, K. N. Solanki, and A. K. Vasudevan, “Subcritical crack growth and crack tip driving forces in relation to material resistance,” vol. 35, no. 4–5, pp. 251–265, 2017, doi: doi:10.1515/corrrev-2017-0034.
  23. F. M. Mohammed, “Mechanical Properties Investigation of Composite Material Under Different Parameters Variations,” Al-Khwarizmi Eng. J., vol. 13, no. 1 SE-Articles, pp. 74–83, Mar. 2017, doi: 10.22153/kej.2017.09.001.
  24. M. Maksimović, I. Vasović, K. Maksimović, S. Maksimović, and D. Stamenković, “Crack growth analysis and residual life estimation of structural elements under mixed modes,” Procedia Struct. Integr., vol. 13, pp. 1888–1894, 2018, doi: https://doi.org/10.1016/j.prostr.2018.12.324.
  25. Z. A. Alkaissi and D. A. Al Khafagy, “Propagation Mechanisms for Surface Initiated Cracking  in Composite Pavements,” Al-Khwarizmi Eng. J., vol. 5, no. 3 SE-Articles, pp. 51–59, Sep. 2009, [Online]. Available: https://alkej.uobaghdad.edu.iq/index.php/alkej/article/view/571
  26. M. H. Aliabadi, “3.02 - Boundary Element Methods in Linear Elastic Fracture Mechanics,” I. Milne, R. O. Ritchie, and B. B. T.-C. S. I. Karihaloo, Eds., Oxford: Pergamon, 2003, pp. 89–125. doi: https://doi.org/10.1016/B0-08-043749-4/03068-8.
  27. Y. A. Fageehi and A. M. Alshoaibi, “Numerical Simulation of Mixed-Mode Fatigue Crack Growth for Compact Tension Shear Specimen,” Adv. Mater. Sci. Eng., vol. 2020, p. 5426831, 2020, doi: 10.1155/2020/5426831.
  28. Fahem, A., A. Alshamma, F. (2009). 'A study of the effect of impact loading on dsifs and crack propagation in plate', Al-Qadisiyah Journal for Engineering Sciences, 2(2), pp. 288-303. https://doi.org/10.30772/qjes.2009.34785
  29. Piyush Singhal, Ch.  Srividhya, Ashwani  Kumar, Shilpi  Chauhan, Zahraa N.  Salman, Alok  Jain, "Modelling and Simulation of Fracture Mechanics and Failure Analysis of Materials using FEA", E3S Web Conf. 430 01113 (2023). DOI: 10.1051/e3sconf/202343001113
  30. Ali Fahem, Addis Kidane, Michael A. Sutton, "Geometry factors for Mode I stress intensity factor of a cylindrical specimen with spiral crack subjected to torsion", Engineering Fracture Mechanics, Volume 214, 2019, Pages 79-94, ISSN 0013-7944, https://doi.org/10.1016/j.engfracmech.2019.04.007