Document Type : Research Paper

Authors

Mechanical Engineering Techniques of Power, Engineering Technical College of Al-Najaf, Al-Furat Al-Awsat Technical University, Al-Najaf, Iraq.

10.30772/qjes.2024.145157.1057

Abstract

A steady-state effect analysis of enhancing the cooling performance of a photovoltaic/thermal (PV/T) collector using a damper that changes the flow direction with the multi-flow channel is investigated numerically and experimentally. The study aims to improve the electrical efficiency of PV/T systems with turbulent generation to increase exchange between absorbent panels and airflow with less pressure drop. The effect of different mass flux rates (MFR) of (0.04, 0.05, 0.06, 0.07, and 0.08) kg/s, and various solar flux of (600, 800, and 1000)W/m^2 on solar cell (PV) temperature and PV/T system performance is studied under indoor test conditions. The results indicated that the air temperature is inversely proportional to the air MFR, and the overall efficiency highly depends on the air MFR and solar flux intensity. In addition, the experiment result shows that the higher value at air MFR (0.04-0.08)kg/s, solar flux (1000 W/m^2) for electrical, thermal, and overall efficiency are (17.03%, 74.14%, and 90.4%), respectively. Moreover, The percentage output power its (28.44%) by (15.93) W leads to pioneering results compared to previous studies

Keywords

  • Dominguez,Soteris_A._Kalogirou. Solar_Energy_Engineering._Processes_and_Systems-Academic_Press_2014 with-cover-page-v2.pdf. 2014.
  • M. Salih, J. M. Jalil, and S. E. Najim, “Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM,” Renew. Energy, vol. 143, pp. 1053–1066, 2019, doi: 10.1016/j.renene.2019.05.050
  • I. Hasan and D. Mohammed Muter, “A review of earth to air heat exchanger as a passive cooling and heating technique and the affecting parameters,” Al-Qadisiyah J. Eng. Sci., vol. 14, pp. 21–29, 2021, doi: 10.30772/qjes.v14i1.735
  • F. Yousif and M. A. Theeb, “A review of solar air collectors with baffles and porous medium: Types and applications,” Al-Qadisiyah J. Eng. Sci., vol. 16, no. 1, pp. 37–41, 2023, doi: 10.30772/qjes.v16i1.841
  • Nadheer Abd zaid and D. A Hamzah, “Heat Transfer Enhancement by Turbulence Generator inside Heat Receiver,” Al-Qadisiyah J. Eng. Sci., vol. 13, pp. 268–273, 2020,
  • Awda, Y. KHALAF, and S. Salih, “Analysis of temperature effect on a crystalline silicon photovoltaic module performance,” Int. J. Eng., vol. 29, no. 5, pp. 722–727, 2016, [Online]. Available: https://www.ije.ir/article_72728.html
  • A. Hasan and S. K. Parida, “An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint,” Renew. Sustain. Energy Rev., vol. 60, pp. 75–83, 2016, doi: org/10.1016/j.rser.2016.01.087
  • Fudholi et al., “Energy and exergy analyses of photovoltaic thermal collector with∇-groove,” Sol. Energy, vol. 159, no. November 2016, pp. 742–750, 2018, doi: 10.1016/j.solener.2017.11.056
  • Jha, B. Das, and R. Gupta, “An experimental study of a photovoltaic thermal air collector (PVTAC): A comparison of a flat and the wavy collector,” Appl. Therm. Eng., vol. 163, no. September, p. 114344, 2019, doi: 10.1016/j.applthermaleng.2019.114344
  • Amanlou, T. T. Hashjin, B. Ghobadian, and et G. Najafi, “Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate,” Appl. Therm. Eng., vol. 141, pp. 413–421, 2018, doi: org/10.1016/j.applthermaleng.2018.05.070
  • Abuşka and M. B. Akgül, “Experimental study on thermal performance of a novel solar air collector having conical springs on absorber plate,” Arab. J. Sci. Eng., vol. 41, pp. 4509–4516, 2016, doi: org/10.1007/s13369-016-2177-4
  • M. Alsayah, M. H. K. Aboaltabooq, M. H. Majeed, and B. A. S. Bassam Abed, “CFD study to improve PV cell performance by forced air: Modern design,” Period. Eng. Nat. Sci., vol. 7, no. 3, pp. 1468–1477, 2019, doi: 10.21533/pen.v7i3.794
  • Kim and Y. Nam, “Study on the cooling effect of attached fins on PV using CFD simulation,” Energies, vol. 12, no. 4, 2019, doi: 10.3390/en12040758
  • M. Elbreki, K. Sopian, A. Fazlizan, and A. Ibrahim, “An innovative technique of passive cooling PV module using lapping fins and planner reflector,” Case Stud. Therm. Eng., vol. 19, no. January, p. 100607, 2020, doi: 10.1016/j.csite.2020.100607
  • Zhao, T. Meng, C. Jing, J. Hu, and S. Qian, “Experimental and numerical investigation on thermal performance of PV-driven aluminium honeycomb solar air collector,” Sol. Energy, vol. 204, no. June 2019, pp. 294–306, 2020, doi: 10.1016/j.solener.2020.04.047
  • Baklouti and Z. Driss, “Numerical and Experimental Study of the Impact of Key Parameters on a PVT Air Collector: Mass Flow Rate and Duct Depth,” J. Therm. Sci., vol. 30, no. 5, pp. 1625–1642, 2021, doi: 10.1007/s11630-020-1345-8
  • Khelifa, M. El Hadi Attia, Z. Driss, and A. Muthu Manokar, “Performance enhancement of photovoltaic solar collector using fins and bi-fluid: Thermal efficiency study,” Sol. Energy, vol. 263, p. 111987, 2023, doi: org/10.1016/j.solener.2023.111987
  • Touti, M. Masmali, M. Fterich, and H. Chouikhi, “Experimental and numerical study of the PVT design impact on the electrical and thermal performances,” Case Stud. Therm. Eng., vol. 43, p. 102732, 2023,
  • A. A. Bin Ishak, A. Ibrahim, A. Fazlizan, M. F. Fauzan, K. Sopian, and A. A. Rahmat, “Exergy performance of a reversed circular flow jet impingement bifacial photovoltaic thermal (PVT) solar collector,” Case Stud. Therm. Eng., vol. 49, no. June, p. 103322, 2023, doi: 10.1016/j.csite.2023.103322
  • S. Nazri et al., “Analytical and experimental study of hybrid photovoltaic–thermal–thermoelectric systems in sustainable energy generation,” Case Stud. Therm. Eng., vol. 51, no. June, p. 103522, 2023, doi: 10.1016/j.csite.2023.103522
  • Noori Merzah, M. H. Majeed, and F. A. Saleh, “Numerical study of flat plate solar collector performance with square shape wicked evaporator,” Al-Qadisiyah J. Eng. Sci., vol. 12, pp. 90–97, 2019, doi: 10.30772/qjes.v12i2.592
  • M. Majeed and L. M. Nassir, “Statistical analysis of the vacuum solar collector using the analysis of variance method,” vol. 16, pp. 273–278, 2023, doi: 10.30772/qjes.2023.180350
  • Yu, S. Chan, K. Chen, B. Zhao, X. Ren, and G. Pei, “Numerical and experimental study of a novel vacuum Photovoltaic/thermal (PV/T) collector for efficient solar energy harvesting,” Appl. Therm. Eng., vol. 236, p. 121580, 2024, doi: org/10.1016/j.applthermaleng.2023.121580
  • Standard, “93-77,‘Methods of testing to determine the thermal performance of solar collectors,’” New York, 1977.
  • K. Rajput, A textbook of fluid mechanics and hydraulic machines. S. Chand Publishing, 2004.
  • S. Joshi, A. Tiwari, G. N. Tiwari, I. Dincer, and B. V. Reddy, “Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system,” Int. J. Therm. Sci., vol. 48, no. 1, pp. 154–164, 2009, doi: 10.1016/j.ijthermalsci.2008.05.001
  • E. Amori and H. M. Taqi Al-Najjar, “Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq,” Appl. Energy, vol. 98, pp. 384–395, 2012, doi: 10.1016/j.apenergy.2012.03.061
  • Fudholi et al., “Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study,” Renew. Sustain. Energy Rev., vol. 100, no. July 2018, pp. 44–51, 2019, doi: 10.1016/j.rser.2018.10.019
  • Zohri, S. Hadisaputra, and A. Fudholi, “Exergy and energy analysis of photovoltaic thermal (Pvt)with and without fins collector,” ARPN J. Eng. Appl. Sci., vol. 13, no. 3, pp. 803–808, 2018, [Online]. Available: https://scholar.google.com/scholar?q=Exergy+and+energy+analysis+of+photovoltaic+thermal+(Pvt)with+and+without+fins+collector&hl=ar&as_sdt=0&as_vis=1&oi=scholart
  • S. Joshi and A. Tiwari, “Energy and exergy efficiencies of a hybrid photovoltaic-thermal (PV/T) air collector,” Renew. Energy, vol. 32, no. 13, pp. 2223–2241, 2007, doi: 10.1016/j.renene.2006.11.013
  • Ibrahim, A. Fudholi, K. Sopian, M. Y. Othman, and M. H. Ruslan, “Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system,” Energy Convers. Manag., vol. 77, pp. 527–534, 2014, doi: 10.1016/j.enconman.2013.10.033
  • Hrvoje Jasak, “Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows,” vol. M, no. septembre, p. 200, 1992, [Online]. Available: https://books.google.com.co/books?id=_ghlHAAACAAJ
  • Kumar and M. A. Rosen, “Performance evaluation of a double pass PV/T solar air heater with and without fins,” Appl. Therm. Eng., vol. 31, no. 8–9, pp. 1402–1410, 2011, doi: 10.1016/j.applthermaleng.2010.12.037
  • Mazón-Hernández, J. R. García-Cascales, F. Vera-García, A. S. Káiser, and B. Zamora, “Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream,” Int. J. Photoenergy, vol. 2013, 2013, doi: org/10.1155/2013/830968
  • M. Maghrabie, A. S. A. Mohamed, M. S. Ahmed, H. M. Maghrabie, and M. S. Ahmed, “Improving Performance of Photovoltaic Cells via Active Air Cooling System,” in Proc. 4th Int. Conf. Energy Eng, 2017, pp. 1–5. [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=ar&user=IQkfp4sAAAAJ&citation_for_view=IQkfp4sAAAAJ:eQOLeE2rZwMC
  • A. Haidar, J. Orfi, and Z. Kaneesamkandi, “Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency,” Results Phys., vol. 11, pp. 690–697, 2018, doi: org/10.1016/j.rinp.2018.10.016
  • M. Kudhair, “NUMERICAL AND EXPERIMENTAL INVESTIGATION ON IMPROVING PHOTOVOLTAIC MODULE EFFICIENCY USING AIR GUIDE COOLING,” no. November 2019, 2012.
  • Hossain et al., “New Design of Solar Photovoltaic and Thermal Hybrid System for Performance Improvement of Solar Photovoltaic,” Int. J. Photoenergy, vol. 2020, no. 1, 2020, doi: 10.1155/2020/8825489