Document Type : Research Paper

Authors

1 Prosthetic and Orthotic Engineering Department, College of Engineering, Al-Nahrain University, Baghdad , Iraq

2 Mechanical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq

3 Mechanical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

10.30772/qjes.2024.146062.1086

Abstract

Introduction: Osseointegration are a particular kind of prosthesis that is inserted a short titanium rod or screw into the bone surgically and joined to the prosthetic limb.
Experimental part: This study looked at a patient's gait analysis with above-knee amputation wearing osseointegration prosthesis implant when walking above force plate. Evaluated the mechanical and fatigue properties of a Ti13Nb13Zr alloy implant.
Theoretical part: Drawing and analysis a femoral bone model with an osseointegration implant using Ansys Workbench 17.2.
Results and discussion: The results of the tensile testing showed an ultimate tensile strength of 553 MPa, average yield strength of 480 MPa, an elongation of 19.66%, and a Young's modulus of 2.73 GPa. Furthermore, a compressive strength of 1010 MPa and compression yield strength of 700 MPa were found by compression testing. The results of fatigue testing, which were displayed as S-N curves, highlighted the alloy's time-dependent fatigue behavior by showing decreasing fatigue strength with an increase in cycles. Force plate showed amaximum force of 600 N was reported. A strong safety margin was shown by Finite Element Analysis in the bone containing the implant, with safety factors often more than 5 and low deformation (2.4 mm) appropriate for prosthetic uses. A good static design was confirmed by the Von-Mises stress distribution, which was primarily below 46 MPa.
Conclusion: Comprehensive results confirm the mechanical feasibility of the Ti13Nb13Zr alloy for prosthetic applications and offer important new information for improving prosthetic design, guaranteeing durability, and improving safety in practical applications.

Keywords

  • Transfemoral amputation: a survey of quality of life, prosthetic use and problems. Prosthet Orthot Int. 25:186–194, 2001. https://doi.org/10.1080/03093640108726601 
  • Branemark R, Branemark PI, Rydevik B, Myers RR. Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev. 38:175–181, 2001. https://doi.org/10.1682/jrrd.2003.07.0107
  • Thesle, A.; Brånemark, R.; Håkansson, B.; Ortiz-Catalan, M. Biomechanical Characterisation of Bone-anchored Implant Systems for Amputation Limb Prostheses: A Systematic Review. Ann. Biomed. Eng. 2018, 46, 377–391. https://doi.org/10.1007/s10439-017-1976-4
  • Al Muderis M, Khemka A, Lord SJ, Van de Meent H, Frolke JPM. Safety of osseointegrated implants for transfemoral amputees: a two-center prospective cohort study. J Bone Joint Surg. 2016; 98(11):900–9. https://doi.org/10.2106/jbjs.15.00808
  • Hagberg K, Branemark R. One hundred patients treated with osseointegrated transfemoral amputation prostheses: rehabilitation perspective. J Rehabil Res Dev. 46:331–344, 2009. https://doi.org/10.1682/jrrd.2012.08.0135
  • Hagberg K, Hansson E, Branemark R. Outcome of percutaneous osseointegrated prostheses for patients with unilateral transfemoral amputation at two-year follow-up. Arch Phys Med Rehabil. 95:2120–2127, 2014. https://doi.org/10.1016/j.apmr.2014.07.009 
  • Lundberg M, Hagberg K, Bullington J. My prosthesis as a part of me: a qualitative analysis of living with an osseointegrated prosthetic limb. Prosthet Orthot Int. 35:207–214, 2011. https://doi.org/10.1177/0309364611409795 
  • Van de Meent H, Hopman MT, Frolke JP. Walking ability and quality of life in subjects with transfemoral amputation: a comparison of osseointegration with socket prostheses. Arch Phys Med Rehabil. 94:2174–2178, 2013. https://doi.org/10.1177/0309364611409795 
  • Berbari EF, Hanssen AD, Duffy MC, Steckelberg JM, Ilstrup DM, Harmsen WS, Osmon DR. Risk factors for prosthetic joint infection: case-control study. Clin Infect Dis. 27:1247– 1254, 1998. https://doi.org/10.1086/514991 
  • Saif M. Abbas and Ammar I. Kubba (2020) Fatigue Characteristics and Numerical Modelling Prosthetic for Chopart Amputation Modelling and Simulation in Engineering Volume 2020, Article ID 4752479. https://doi.org/10.1155/2020/4752479
  • M. Abbas, Fatigue Characteristics and Numerical Modeling Socket for Patient with Above Knee Prosthesis, Defect and Diffusion Forum Journal Vol. 398, (2020) 76-82. https://doi.org/10.4028/www.scientific.net/ddf.398.76 
  • Namba RS, Paxton L, Fithian DC, Stone ML. Obesity and perioperative morbidity in total hip and total knee arthroplasty patients. J Arthroplasty. 20 (7 suppl 3):46–50, 2005. https://doi.org/10.1016/j.arth.2005.04.023 
  • Baig MR, Rajan M. Effects of smoking on the outcome of implant treatment: a literature review. Indian J Dent Res. 18:190–195, 2007. https://doi.org/10.4103/0970-9290.35831 
  • Hasegawa H, Ozawa S, Hashimoto K, Takeichi T, Ogawa T. Type 2 diabetes impairs implant osseointegration capacity in rats. Int J Oral Maxillofac Implants. 23:237–246, 2008. https://doi.org/10.11607/jomi.3480 
  • Mellado-Valero A, Ferrer Garcia JC, Herrera Ballester A, Labaig Rueda C. Effects of diabetes on the osseointegration of dental implants. Med Oral Patol Oral Cir Bucal. 12:E38–43, 2007. https://doi.org/10.4317/medoral.15.e52 
  • Sloan A, Hussain I, Maqsood M, Eremin O, El-Sheemy M. The effects of smoking on fracture healing. Surgeon. 8:111–116, 2010. https://doi.org/10.1016/j.surge.2009.10.014 
  • Leijendekkers RA, van Hinte G, Frolke JP, van de Meent H, Nijhuis-van der Sanden MW, Staal JB. Comparison of bone-anchored prostheses and socket prostheses for patients with a lower extremity amputation: a systematic review. Disabil Rehabil. 39(11):1045–58, 2017. https://doi.org/10.1080/ 09638288.2016.1186752
  • Branemark R, Branemark PI, Rydevik B, Myers RR. Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev. 38(2):175–81, 2001. https://doi.org/10.1682/jrrd.2003.07.0107 
  • Overmann AL, Aparicio C, Richards JT, Mutreja I, Fischer NG, Wade SM, et al. Orthopaedic osseointegration: Implantology and future directions. J Orthop Res. 2020;38(7):1445–54. https://doi.org/10.1002/jor.24576
  • Hagberg K, Hansson E, Branemark R. Outcome of percutaneous osseointegrated prostheses for patients with unilateral transfemoral amputation at two-year follow-up. Arch Phys Med Rehabil. 95(11):2120–7, 2014. https://doi.org/10.1016/j.apmr.2014.07.009
  • Leijendekkers RA, van Hinte G, Frolke JP, van de Meent H, Atsma F, Nijhuis-van der Sanden MW, et al. Functional performance and safety of bone-anchored prostheses in persons with a transfemoral or transtibial amputation: a prospective one-year follow-up cohort study. Clin Rehabil. 33(3):450– 64, 2019. https://doi.org/10.1177/0269215518815215 
  • Van de Meent H, Hopman MT, Frolke JP. Walking ability and quality of life in subjects with transfemoral amputation: a comparison of osseointegration with socket prostheses. Arch Phys Med Rehabil. 94(11):2174–8, 2013. https://doi.org/10.1016/j.apmr.2013.05.020
  • Pitkin M. Design features of implants for direct skeletal attachment of limb prostheses. J Biomed Mater Res A. 101(11):3339–48, 2013. https://doi.org/10.1002/jbm.a.34606
  • Hagberg K, Ghassemi Jahani SA, Kulbacka-Ortiz K, Thomsen P, Malchau H, Reinholdt C. A 15-year follow-up of transfemoral amputees with bone-anchored transcutaneous prostheses. Bone Joint J. 102-B(1):55–63, 2020. https://doi.org/10.1302/0301-620X.102B1.BJJ-2019-0611
  • Al Muderis M, Khemka A, Lord SJ, Van de Meent H, Frolke JP. Safety of Osseointegrated Implants for Transfemoral Amputees: A Two-Center Prospective Cohort Study. J Bone Joint Surg Am. 98 (11):900–9, 2016. https://doi.org/10.2106/JBJS.15.00808
  • Al Muderis M, Lu W, Li JJ. Osseointegrated Prosthetic Limb for the treatment of lower limb amputations: Experience and outcomes. Unfallchirurg. 120(4):306–11, 2017. https://doi.org/10.1007/s00113-016- 0296-8
  • Aschoff H. About osseintegrated, percutaneous implants for rehabilitation following limb-amputation Langenbecks Arch Surg Conference publication. Paper number 13 (pp903), 2014. https://doi.org/10.29199/cann.101015 
  • Aschoff HH, Kennon RE, Keggi JM, Rubin LE. Transcutaneous, distal femoral, intramedullary attachment for above-the-knee prostheses: an endo-exo device. J Bone Joint Surg Am. 92 Suppl 2:180–6, 2010. https://doi.org/10.2106/JBJS.J.00806
  • Hagberg K, Branemark R. One hundred patients treated with osseointegrated transfemoral amputation prostheses—rehabilitation perspective. J Rehabil Res Dev. 46(3):331–44, 2009. https://doi.org/10.1682/jrrd.2012.08.0135 
  • Atallah R, Leijendekkers RA, Hoogeboom TJ, Frolke JP. Complications of bone-anchored prostheses for individuals with an extremity amputation: A systematic review. PLoS One. 13(8) 0201821, 2018. https://doi.org/10.1371/journal.pone.0201821
  • Hagberg K, Branemark R, Gunterberg B, Rydevik B. Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year followup. Prosthet Orthot Int. 32(1):29–41, 2008. https://doi.org/10.1080/03093640701553922
  • Standard Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications R58130 Designation: F1713 − 08 2013. https://doi.org/10.1520/f1713-08r21e01 
  • American Society for Testing and Materials Information, Standard Test Methods for Tension Testing of Metallic Materials Designation: E8/E8M − 16a.
  • American Society for Testing and Materials Information, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature Designation: E 9 – 89a, 2000.
  • Fahem, A., Kidane, A. & Sutton, M. Loading Rate Effects for Flaws Undergoing Mixed-Mode I/III Fracture. Exp Mech61, 1291–1307 (2021). https://doi.org/10.1007/s11340-021-00739-0
  • Perez, A.; Mahar, A.; Negus, C.; Newton, P.; Impelluso, T. A. Computational evaluation of the e_ect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures. Med. Eng. Phys. 30, 755–760, 2008. https://doi.org/10.1016/j.medengphy.2007.08.004 
  • American Society for Testing and Materials Information, Standard Designation: F1713 − 08 (Reapproved 2013). Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications (UNS R58130). https://doi.org/10.1520/f1713-08 
  • Libo Zhou, Tiechui Yuan, Ruidi Li, Jianzhong Tang, Guohua Wang, Kaixuan Guob and Jiwei Yuan. Densification, microstructure evolution and fatigue behavior of Ti-13Nb-13Zr alloy processed by selective laser melting. Powder Technology 342 (2019) 11–23. https://doi.org/10.1016/j.powtec.2018.09.073.
  • Fahem, A., A. Alshamma, F. (2009). 'A STUDY OF THE EFFECT OF IMPACT LOADING ON DSIFs AND CRACK PROPAGATION IN PLATE', Al-Qadisiyah Journal for Engineering Sciences, 2(2), pp. 288-303. https://doi.org/10.30772/qjes.2009.34785
  • Moaveni Saeed. 2008. Finite Element Analysis : Theory and Application with Ansys. 3rd ed. Upper Saddle River N.J: Pearson Prentice Hall.