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The utilisation of UAV imagery for the creation of digital maps is a compelling subject within the domains of
photogrammetry and remote sensing. This work introduces a hierarchical method for automating the process of
building, extracting, and outlining using images captured by drones. The flight plan should be initially planned
to provide about 60-70% overlap to guarantee thorough coverage and precise image matching. The altitude
of the drone should be adjusted based on the intended resolution to achieve a balance between capturing fine
details and covering a larger region. Next, the technique of photogrammetric image matching was utilised to
generate orthophotos and the Digital Surface Model (DSM). Moreover, the Digital Terrain Model (DTM) was
extracted from the DSM to differentiate non-ground objects, including buildings. Subsequently, building segments
were identified by applying a threshold to the difference between the Digital Surface Model (DSM) and the
Digital Terrain Model (DTM), enabling accurate extraction of building segments. Finally, building polygons were
generated involving two stages: coarse and refined, considering the least squares adjustment process to guarantee
accuracy and detail. The proposed method was applied to drone images captured on the campus of Al-Muthanna
University in the southwest of Iraq. The qualitative and quantitative investigation indicated that the building
polygons obtained were highly promising, with approximately one-meter geometric accuracy. Nevertheless,
accurately differentiating between buildings and other human-made structures (such as tents) and resolving issues
related to mismatching error still pose significant difficulties, highlighting the need for additional investigation
and development.

� 2025 University of Al-Qadisiyah. All rights reserved.

1. Introduction
Unmanned Aerial Vehicle (UAV) technology has garnered significant in-

terest in several remote sensing applications, including urban planning, smart
cities, environmental monitoring, and disaster management [1]. The main
advantages are noticeable via offering high-resolution optical images at a com-
paratively affordable cost. This capability is further improved by the presence
of sophisticated photogrammetric image matching software, which promotes
the trend by producing orthophotos and digital surface models (DSMs) in a
completely automated manner. The high-resolution photos are essential for
generating extremely detailed DSMs, DTMs, and extracting building outli-
nes [2]. However, the complex and unpredictable of building shapes in urban
environments pose significant barriers. These issues require continuous ef-
forts and additional research to enhance the utilisation of UAV technology in
these complex environments, guaranteeing precise and dependable data for
crucial applications. Recently, the use of UAV imagery for automatic DTM
and building extraction has attracted a rising interest. The major advantages
of employing these techniques compared to the classical mapping methods
are demonstrated by their cost-effective [3]. Furthermore, [4] explained the
enhancement of OpenStreetMap building regularization by using contour in-
formation utilizing oblique drone imageries. Several studies have examined
automatic building extraction from UAV-based images and DSMs, emphasi-
zing the significance of precise and automatic building footprint extraction via

DSM and DTM data [5–7]. The research conducted by [8] emphasized the
benefits and constraints associated with utilizing DSM and DTM for the extrac-
tion of three-dimensional (3D) building models. Furthermore, [9] examined
the application of tilt photogrammetry to produce DSM, DTM, and normalized
DSM (nDSM) to determine the building height using UAV point cloud data.
With the availability of UAV optical images, the procedure of building detecti-
on and delineation starts with generating orthophotos and the Digital Surface
Model (DSM). Alternatively, optical images can also produce point cloud data,
which can then be segmented and used for building extraction, as described in
[10]. Methods based on raster Digital Surface Models (DSMs) are particularly
appealing due to the widespread availability of advanced image processing
toolboxes [11]. The DSMs raster describes all visible man-made objects above
ground, including buildings, trees, bridges, bridges etc. In contrast, Digital
Terrain Models (DTMs) represent only the bare ground. Thus, applying a
filter to differentiate between the DSM and DTM is essential for accurate
building detection. Consequently, the so-called Normalized DSM is created
by subtracting the DTM from the DSM, which helps in separating buildings
in complex environments [12]. However, distinguishing between buildings
and trees is challenging without the Normalized Difference Vegetation Index
(NDVI), which typically differentiates vegetation from man-made objects. This
limitation highlights the difficulty in accurately highlighting structures that
rise above the ground level.
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Nomenclature
AI Artificial intelligent DT M Digital terrain model
3D Three-dimensional GIS Geographic information system
2D Two-dimensional NDV I Normalized difference vegetation index
CNN Convolutional neural network NGP Network ground points
DSM Digital surface model UAV Unmanned aerial vehicle

Furthermore, objects such as buildings and trees that have significant height
above the ground are identified by applying a height threshold, commonly set
at around 2.5 meters [13]. Some research has considered using a planarity
map to remove trees by analysing the height variation within the DSM raster
[14]. The planarity concept is based on the fact that buildings tend to have
more uniform, planar surfaces, compared to the irregular surfaces of trees. By
analyzing these height variations, trees can be effectively eliminated, resulting
in a binary image that contains only building segments. Consequently, the
final output of this process should be a raster image exclusively depicting buil-
ding segments. For practical applications, the raster representation of building
segments needs to be transformed into a vector format. This transformation
process is known as vectorization [15]. During vectorization, the detected
building segments are converted into vector data, typically in the form of poly-
gons. These polygons represent the outlines of the buildings and are stored in
a shapefile format. Shapefiles are widely used in geographical software, such
as Geographic Information Systems (GIS), for various spatial analyses and
mapping purposes. This process of converting building segments into vector
format and creating shapefiles is also referred to as building regularization
[16]. Building regularization ensures that the building outlines are accurately
represented and can be easily integrated into GIS applications. This enables
further analysis, such as analysing spatial relationships, and integrating with
other geospatial datasets for urban planning, disaster management, and other
applications. In the context of building regularisation, recent trends show that
state-of-the-art machine learning models are being used to generate Digital
Terrain Models (DTMs) from UAV datasets [17] which can be used for building
detection and regularisation. Alongside, the Convolutional Neural Network
(CNN) based methods have made significant developments. These methods
have been integrated as plugins into commonly utilized platforms like QGIS,
with notable examples including mapflow [18] and Polymapper, introduced by
[19]. However, challenges remain in generating precise edges and handling
occlusions due to reliance on curve initialization [20].

Figure 1. The proposed Methodology. The first stage was data collection,
including flight planning, preparing the drone, and image capturing. Next, ge-
nerating orthophotography and DSM. Further, extracting DTM and Building
segments. Finally, the raster to vector transformation stage (vectorization).

While the Artificial intelligent (AI) based models (e.g., mapflow ) can be
effective, they necessitate sufficient training data and a cognitive approach
to the process of extracting valuable information [21]. Additionally, existing
building outlining methods still face difficulties in handling complex building
shapes with holes [1]. Overall, drone technology has proven significant in
efficiently and economically acquiring high-resolution datasets for building
footprint extraction. Consequently, there has been a rise in the demand for uti-
lizing UAV imagery and DTM data for building extraction and 3D modelling,
showcasing the potential benefits and challenges associated with these techno-

logies. In this research, the use of UAV images for the purposes of building
detection and regularization is investigated. Furthermore, the study explains
key stages, including Digital Surface Model (DSM) generation, Digital Terrain
Model (DTM) extraction, building detection, and 2D reconstruction. Finally, a
qualitative and quantitative analysis are conducted to evaluate the proposed
method and to highlight the challenging scenarios. This paper is organized as
follows. Methodology is explained in the next section including data collection,
orthophoto and DSM generation, DTM and building extraction, and outlining.
In Section 3, the obtained results will be presented and analysed. Lastly, the
research conclusion will be given in section 4.

Figure 2. Flight plan describing front and side overlap, camera angle, and
mapping out the drone’s path.

Figure 3. . Positional accuracy: Displays of all tie points are shown from the
top view (XY plane), side view (ZY plane), and front view (XZ plane), with
colours indicating the uncertainty of each point’s position. The uncertainties
are measured in meters, ranging from a minimum of 0.014 m to a maximum
of 0.5855 m , with a median position uncertainty of 0.0531 m.

2. Methodology
Figure 1 below illustrates the process of creating building polygons from drone
images through a hierarchical series of stages. It starts with the data collection
stage, including flight planning to map out the drone’s path and camera settings,
and image acquisition.
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(a) DSM

(b) DTM

(c) Building segment

Figure 4. DTM and building segments extraction process. a) DSM raster, b)
DTM of building, and c)the extracted building segments. The white box (in
a) indicates the window for DTM extraction filter. It moves across the whole
image raster.

The process then moves to creating the DSM and Orthophoto from the cap-
tured overlapped image, including aerial triangulation to calculate camera
positions, tie point creation to identify common points in overlapping images,
and reconstruction to create the Digital Surface Model (DSM) and orthopho-
tography images. The context capture software is used for creating DSM and
orthophotography images. Next, the stage of DTM and the creation of building
segments, which involves removing outliers to discard erroneous values in the
DSM raster, extracting of digital terrain model (DTM) from the DSM, and
identifying building segments. Finally, the routing phase begins by defining

the boundary points of the building segments, followed by creating approxima-
ted polygons, and refinement of these polygons for accuracy and detail. The
proposed methodology was applied to investigate its effectiveness on drone
images.

Figure 5. Building polygons creation. The building segment is on the left side,
the initial boundary (black dots) are presented in the middle, and the created
building polygon is on the right side (yellow).

2.1 Study area and data Collection
The chosen study area (0.15 km2) is located on the campus of Al-Muthanna
University South-West of Iraq within 527300E to 527600E, and 3466900N to
3467350N. It consists of several buildings with very complex structures and
shapes. Low bushes and grass are the main green area in the campus. Firstly,
the flight plan was prepared as shown in Fig. 2. Front and side overlap were
set to 70% with flying height approximately 150m. The flight condition for the
drone would be in the middle of the day to reduce the shadow effects and to
improve images quality. It is preferable for the temperature to be moderate, e.g.,
less than 40°. Light winds is an important factor for a stable flight to reduce
errors in calculating the camera orientation parameters. The interior camera
calibration parameters are provided in Table 1. These parameters are, focal
length, the principal points positions (X, Y), lens distortion coefficients (K1,
K2, K3) and tangential distortion. These parameters were estimated based on
the concept of the collinearity equations. The optimization process changed
these parameters, indicating an improvement in camera calibration accuracy
by adjusting the focal length and distortion parameters. Images were captured
using Drone type “Mavic 2 Pro”. The GNSS system, incorporating GPS and
GLONASS, delivers the following hovering accuracy: vertically, ±0.1m when
vision positioning is enabled and ±0.5m with GPS positioning; horizontally,
±0.3m with vision positioning enabled and ±1.5m with GPS positioning, see
http://www.dji.com/mavic-2 for more detail. A total of 346 images were suc-
cessfully calibrated. The number of created tie points was 122822 points, with
a median of 1463 points per photo. The Tie points were detected automatically
using the Context capture software. The median position uncertainty equals
0.0531 meters with a minimum uncertainty of 0.014 m and a maximum of
0.5855 m as shown in Fig. 3.

Table 1. Camera calibration parameters.

Value Focal
length

Principal
point X

Principal
point Y

K1 K2 K3

Previous 10.26 2665.25 1483.84 -0.006 -0.005 0.040
Optimized 13.12

2.2 Orthophoto and DSM generation
For the creation of orthophoto images and DSM, the Context Capture softwa-
re (Academic version) was utilized https://www.bentley.com/software/. The
software contains many tools and is able to process images and produce or-
thophotography, DSM, point cloud data, and much more. Additionally, the
software is capable of doing some other calculations, such as volume. It is
able to manage small holes in the DSM by interpolation. The resolution of
the created orthophotography and DSM was 0.05m. This very high resolution
allows a great chance for visible inspection as well as providing a very detailed
DSM.

2.3 DTM and Building segments extraction
The DSM is a raster image describing all visible man-made objects on the
ground surface, including buildings and trees as well as the bare ground earth.
The pixel values refer to the elevation. While the DTM represents only the bare
ground part. In order to identify building segments, DTM must be separated
first. In this paper, the so-called Network Ground Points (NGP) method is
considered Error! Reference source not found. Firstly, outliers (extremely low
or high pixel values) should be eliminated. The NGP algorithm aims to detect
seed ground points by applying a window filter containing multi-directional
scanlines. The scanline is defined as a vector of data extracted from the DSM
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image within the dimensions of the applied filter. The filter moves across the
entire DSM image at a predetermined shift in both X and Y directions. Figure 4
illustrates DSM raster (top), DTM in the middle, and the extracted building
segments in the bottom. The filter window is indicated by the white box on the
DSM (Fig. 4). The filter moves across the whole image horizontally and verti-
cally, looking for low-elevation pixels as seed ground points. The recognized
seed ground points are then utilized to generate the DTM through an interpola-
tion technique. Further details were given in [22]. Furthermore, the so-called
Normalized Digital Surface Model (nDSM) is created by subtracting DTM
from DSM. This nDSM contains elevated man-made objects above ground,
including buildings and trees, for example. Finally, building segments were
identified by thresholding the resulting nDSM. For instance, only objects have
significant height above ground (e.g., 3 meters) were detected as buildings.
Separated trees (e.g., low bushes) were eliminated using structural component
analysis based on their size.

2.4 Building polygons creation
After generating building segments, the vectorization stage is applied to con-
vert the result from raster format into vector format. This is important because
geographical applications such as Geographic Information System (GIS) deal
with vector data more professionally and practically in terms of modifying,
updating, and adding attributes. The vectorization part involved two stages:
generating approximated building polygons, followed by refinement. Firstly,
the object component algorithm is used to extract border points located at the
outline of building segments. The algorithm begins by identifying the outer
edges of the objects and the edges of any holes within those objects. The image
used must be binary, with non-zero pixels representing the objects and zero
pixels representing the background. The extracted boundary is represented by
coordinates, which are organized in a clockwise or anti-clockwise direction.
Figure 5 describes the process of building polygons creation. The building seg-
ment is on the left side, the initial boundary points (black dots) are presented
in the middle, and the created building polygon is on the right side (yellow).
so that a list of boundary points that are indexed by their row and column
as coordinates is collected. Then, this list of boundary points is reduced by
keeping only corner points as vertices and eliminating all redundant points
located between the selected vertices using the likelihood function introduced
in [23] as given in Eq. 1.

Li = Ai +a×Di × sin(θi)−b×E2
i (1)

The given equation sequentially computes the values (Li) for each boundary
point starting from the initial point. Here, (Ai) denotes the area of simplified
polygons formed from the starting point to the current point and back to the
starting point. (Di) represents the distance from the starting point to the current
point. At each boundary point, the sine of (θi) is calculated. (E2

i ) is the mean
square of the orthogonal distances from the boundary points between the star-
ting point and the current point. The constants (a) and (b) are set experimentally
to 20.0 and 2.0, respectively, to balance the weighting of these different terms.
The proposed methodology, including DTM extraction and building outlining,
was implemented using the programming platform (MATLAB). Further de-
tails can be found in [23]. The results represent approximated solutions for
creating building polygons. Therefore, the final refinement step was applied to
enhance the geometrical accuracy of the created polygons using least squares
adjustment. The aim is to perform a best fit between the border points with
respect to their assigned polygon sides. Additionally, orthogonality constraints
are considered by generating right angles in rectilinear buildings.

3. Results and discussion
The proposed procedure was tested on part of Al-Muthanna University campus
as shown in Fig. 6. The process of building regularization is fully automated,
eliminating the need for any manual digitizing, which makes it look very pro-
mising. This degree of automation suggests that it can be highly efficient and
reliable, potentially leading to significant improvements compared to tradi-
tional digitizing. Figure 6 shows the generated orthophoto image (created by
the Context Capture software) overlaid by the final created building polygons
(MATLAB implementation). The figure showing a digital map contains buil-
dings, tents, and other man-made objects that are outlined. More qualitative
and quantitative analyses focusing on challenging scenarios are provided in
the next section.

Figure 6. Final created digital map. It is showing an orthophotography image
overlaid by the created building polygons (red polygons).

(a) DSM

(b) DTM

(c) Combines DSM and DTM

Figure 7. Section of the extracted DTM, where a) DSM part, b) DTM part,
and c) A profile combines DSM and DTM.
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3.1 Qualitative analysis
The results of the proposed framework are qualitatively analysed by high-
lighting some challenging spots. Firstly, the extracted DTM is investigated.
Figure 7 provides a section from the extracted DTM (in the middle) from the
input DSM (at the top). A profile that combines both DTM and DSM was plot-
ted at the bottom of the figure. Pixel heights in the DSM were approximately
between 10 to 30m. After eliminating elevated man-made objects (Buildings)
and filling their spots by an interpolation technique, the DTM was created. The
heights in the created DTM fluctuated in the range of approximately 11 to 12
meters. At the bottom of Figure 7, a detailed comparison between the extracted
digital terrain model (DTM) and the actual land surface represented in the
input digital surface model (DSM). The presented profile shows that the DTM
marked by the green dashed line closely adheres to the actual land surface
features recorded in the DSM. This close alignment indicates that the DTM
extraction process was successful in accurately representing the underlying
terrain and removing man-made objects such as buildings.

Figure 8. Difficult example presented two connected buildings due to a mis-
matching error caused by occlusion.

In the context of building footprint extraction, some challenging scenarios
were highlighted. For instance, Fig. 8 provides orthophotography image (left),
DSM (middle), and the created building polygon (right). It can be seen that
the two buildings in the orthophotography are separate from each other. While
the created DSM presented a narrow connection between them, as indicated
by the red circle. This refers to the mismatching problem caused by occlusion
and/or shadow effects. Therefore, these two buildings are regularized as one
complex shape, as shown on the right. The other challenge facing the applied
framework is in terms of distinguishing between buildings and other man-made
objects like tents and sheds. This is because the algorithm is based on the
height difference between DTM and DSM. Thus, all objects having more than
3m are classified as buildings. Figure 9 illustrates this issue as the two objects
(tents) were identified and regularized as buildings. Figure 10 below presents
a complex non-rectilinear building as shown in the top (orthophoto) and the
final extracted polygon at the bottom (red line). Additionally, the building
contains a hole or inner courtyard in the middle. The applied regularization
method overcame such a complex case, even with inner holes. Figure 10 shows
the boundary points (black dots) and the created building polygon (red). On
one hand, it can be seen that the generated polygon follows the outlines of the
building segment precisely. Furthermore, the best-fitting of the created polygon
with respect to the boundary points is noticeable. This is the advantage of
applying the least square adjustment, in which the shifting between extracted
polygon edges and the input boundary points is minimized. On the other hand,
certain fine details of the building were oversimplified in the created polygon.
For example, the building includes complicated architectural features, such
as a half-circle structure, highlighted by the red arrow in Figure 10. Due to
the complexity of these features, the created polygon was unable to accurately
capture and represent them, resulting in a loss of detail. This oversimplification
occurred because the process of converting the building’s geometry into a
polygon format was unable to accommodate such complex shapes, leading to
a more generalized and less precise representation.

3.2 Quantitative analysis
For evaluation purposes, a quantitative analysis was performed. To achieve this
task, a ground truth dataset was created by manually digitizing the outlines
of the existing buildings in the scene. As a measure, the Root Mean Squared
Error (RMSE) is used as a standard topographic metric for evaluation. Each
extracted building polygon is compared to its assigned reference polygon from
the digitized ground truth data. It is known that the number of vertices in the
extracted and reference models is not equivalent. Thus, the vertex-to-vertex
evaluation model should be avoided. To achieve a reasonable assessment, the
shift from each vertex in the extracted model to its closest vertex or edge
in the reference model is calculated and vice versa. Figure 11. presents the
created polygons (light green) and the reference polygons (red) overlaid with
an orthophotography image (top) and with DSM (middle). The bottom row
describes the displacements between the created and the reference polygons.

These displacements were estimated as described above (vertex to closest
vertex or edge). The calculated RMSE was approximately one meter which
is slightly high. The main reason for that is related to some remained trees
as well as some existing shelters in contact with buildings. The red arrows
(Fig. 11) indicate a shelter that is attached to a building. While the reference
polygon excluded this shelter as it was digitized manually, it is included in the
created polygon because it is elevated over the ground and in contact with the
building. Consequently, the calculated RMSE becomes higher. However, the
extracted edges on the other sides followed the reference polygon precisely.

Figure 9. High tents classified incorrectly as buildings.

(a) Study building with a hole.

(b) Boundary points.

Figure 10. Complex building example contains a hole. Boundary points were
indicated by small black dots, and the created building polygons are coloured
red.
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(a) Study building with a hole. (b) Boundary points.

(c) Combines DSM and DTM

Figure 11. Positional accuracy assessment of the extracted polygons. The created polygons (green) and the reference polygons (red) overlaid with a) Orthophoto
image, b) DSM, and c) Row describe the shift distances between the created and the reference polygons.

The extracted building polygons seem very promising,g which can be further
used in several applications such as urban planning and 3D city modelling.
For instance, these polygons could be exported as shapefiles and used in geo-
graphical software such as GIS for the purposes of updating existing map and
change detection. The main challenge that faced the implemented methodology
was the elimination of trees using the DSM only. The drone images involved
three bands, Red-Green-Blue (RGB). For instance, the near-infrared (NIR)
band was not available. Separated trees can be removed using a connected
component analysis technique based on their area size. However, some of
high high-elevation trees seem very hard to eliminate due to their large area,
especially those in touch and/or overhanging with buildings. Therefore, the
geometric accuracy of the extracted building polygons was reduced. With the
absence of the NIR band, the DSM and RGB images could be fused for further
enhancement.

4. Conclusion
The potential and practical use of UAV technology has been proven by provi-
ding high-resolution images at relatively low cost. Alongside, the photogram-
metric image matching software supports this trend by creating orthophoto-
graphy and DSM fully automatically. In this study, a detailed procedure for
generating building polygons from raw RGB images captured by a drone was
proposed and investigated. The obtained results were evaluated qualitative-
ly and quantitatively to prove the capability of the applied methodology. As
geometric accuracy, the created buildings’ polygons achieved approximately
one-meter RMSE. The significance of this study is that the manual work of
creating building polygons from drone images is minimized in favour of a fully
automatic procedure. While it succeeded in regularizing complex buildings,
even those ones with courtyards, it was unable to differentiate between buil-
dings and other man-made objects such as tents. Nevertheless, mismatching
errors caused by occlusion and/or shadow, as well as overhanging trees, are the
most challenging scenarios in the procedure of building polygon generation.
A procedure that fused RGB images with DSM for tree removal could be a
future research direction.
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