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This study evaluates the operational performance of the Large Basrah Water Project (LBWP) from February
1, 2023, to December 31, 2024, using an artificial neural network to predict reverse osmosis processes and
analyze factors influencing permeability and concentration polarization. This trains and tests the Artificial Neural
Network (ANN) model using a dataset comprised of 700 items and divides it into three groups: 80% for training,
10% for validation, and 10% for testing. The developed neural network model successfully predicts the output
variables Qp and Cp based on these six input variables: Feed Pressure, Temperature, Q f , C f , Turb, and PH.
Using Bayesian regularization backpropagation, the model demonstrated excellent predictive performance for
Qp, with high correlation (R=0.98268) and low error metrics (RMSE =27.5389). While the prediction for Cp
was slightly less accurate (R=0.95464 and RMSE=6.9029), the overall model performance remains robust and
reliable. This approach provides a valuable predictive tool for understanding and optimizing the underlying system
behavior based on the selected input parameters. Furthermore, the ANN model indicates that the related weights
for temperature, pressure, feed water flow rates, feed water salinity, turbidity, and pH are 17%, 2.94%,42.94%,
28.23%, 6.72%, and 2.17%, respectively. These results imply that using the training datasets, the model fairly
forecasts the concentration and flow of permeate.

� 2025 University of Al-Qadisiyah. All rights reserved.

1. Introduction
Artificial Neural Networks (ANN) are a form of computational models

inspired by the human brain’s networks of neurons [1]. A broad spectrum of
scientific disciplines have recently benefited from the neural network approach.
Environmental scientists and water engineers have been using ANNs since
the dawn of the 1990s. The Artificial Neural Network (ANN) is a beneficial
approach, having a flexible mathematical structure capable of detecting com-
plicated nonlinear correlations among both the input and output data when
compared with standard modeling methods [2]. They are used rather well
to forecast the water quality of certain aquatic bodies. When John Holland
initially proposed the fundamental idea of genetic algorithms in 1975, while
presenting the Adaptive Systems Theory at Michigan University, a theory of
adaptive systems. Inspired by concepts of natural selection and evolution, his
creative work prepared the stage for a novel approach to optimization and
problem-solving. Since then, this initial concept has evolved into a powerful
tool in numerous fields like artificial intelligence, engineering, and economics
[3, 4]. The genetic algorithm is a searching method depending on Darwin’s
theory of evolution. This method replicates natural selection, in which the
best-adapted individuals are selected for reproduction to generate the following
generation’s progeny. Genetic algorithms effectively search a large solution
space to identify optimal or near-optimal outcomes for difficult problems by
iteratively selecting, merging, and altering solutions [5]. ANNs in engineering
are used as flexible function approximators that learn a complex nonlinear
relationship from the data. Current uses of ANNs with RO systems include
modeling the performance based on input parameters (flux, salt rejection, and
fouling rates) to predict the performance, as well as to optimize the performance
of RO processes, whether no analytical model exists or one is too cumbersome

[1, 6]. This section summarizes the application of ANNs for RO modelling or
optimization. Al-Shayji [7] identified significant operational parameters that
contribute to optimal performance and projected the large-scale effectiveness
of spraying using the ANN model combined with statistical methods. Rem-
laoui et al.[8] This study presents a computational model for solar-powered
desalination using photovoltaic/thermal collectors and membrane distillation.
Rashida et al.[9] The study investigates the impact of operating conditions
on the removal of heavy and radioactive elements from an aqueous solution
containing Phosphogypsum using a Reverse Osmosis Membrane. Jafar, [10],
proposed Ann’s integration with an uncertain argument for creating an intelli-
gent control system aimed at maximizing the performance of calm, continuous
plants. This mix allows real-time changes to raise operational effectiveness..
Similarly, Ballello et al. [11] found that one can forecast membrane fouling and
recovery after cleaning by using applied ANN models, an essential component
for preserving system performance. Mjalli et al. [12] This study uses artificial
neural network (ANN) black-box modeling to predict wastewater treatment
plant performance. The model accurately captures plant operation characteri-
stics, minimizing costs and assessing environmental balance. Lee et al. [13,14]
studied an artificial neural network (ANN) model developed with flow rate
for reverse osmosis (SWRO) and imitated developed water temperature and
transmembrane pressure (TMP). To paint the mass flow in the diaphragm of
the RO system, Zhao et al. [15] integrated ANN with a modified solution
diffusion model; the predictions exceeded the pre-model. Additionally, Aish et
al. [16,17] ANN were used to predict the performance of the RO system when
saltwater treatment, active adjustment, and future maintenance are allowed,
by predicting the performance of the system under different feed conditions.
In addition, a more accurate procedure is produced at the RO system with
simulation ANNs.

∗Corresponding Author.
E-mail address: alaa.jassim@uobasrah.edu.iq ; Tel: (+964) 780 139-2171 (Ala’a Jassim)

https://doi.org/10.30772/qjes.000.000.000
2411-7773 � 2025 University of Al-Qadisiyah. All rights reserved. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://qu.edu.iq
https://qjes.qu.edu.iq
https://orcid.org/0009-0007-9399-0443
mailto:alaa.jassim@uobasrah.edu.iq
https://orcid.org/0000-0002-6700-5426
mailto:alaa.jassim@uobasrah.edu.iq
https://doi.org/10.30772/qjes.000.000.000
https://creativecommons.org/licenses/by-nc/4.0/


A
cc

ep
te

d
M

an
us

cr
ip

t..
.A

cc
ep

te
d

M
an

us
cr

ip
t

ZAMAN NAZZAL ET AL. / AL-QADISIYAH JOURNALFOR ENGINEERING SCIENCES 18 (2025) 001 – 007002

Nomenclature
ANN Artificial Neural Network LBWP Large Basrah Water Project
BP Back Propagation T Temperature of feed
Cp Permeate concentration Turb. Turbidity
C f Feed concentration Trainbr Bayesian regularization backpropagation.
RMSE Root mean squared error Traingda Gradient descent algorithm
P Pressure of feed Trainoss Algorithm for one-step backpropagation.
Purelin Linear Function Trainlm Levenberg - Marquardt Algorithm
MSE Mean square error Trainrp Resilient algorithm
Qp Permeate flow Traingdx Gradient Descent with Momentum and Adaptability.
Q f Feed flowrate Trainscg Backpropagation technique with a scaled conjugate gradient.
PH Acidity/alkalinity of feed water Turb Feed turbidity
R Regression Tang-sig Tangent hyperbolic function.
W Weight RO Reverse osmosis, which is a water purification process.

To simulate calm uninterruptedness, Khayet et al. [18], for example, compared
the efficacy of ANN with response surface methodology (RSM). Murthy and
Vora [19] repeated the efficacy of ANNs in modeling dynamic RO systems.
Moreover, K. Mohd et al. [20] projected membrane pore size with ANNs vital
information for membrane filtration. Using geographical fouling data, Park et
al. [21] developed a deep neural network (DNN) to model membrane fouling
during nanofiltration and reverse osmosis filtration using in-situ fouling image
data from optical coherence tomography (OCT). Abuwatfa et al. [22] using
ANN models in RO systems marks significant progress in desalination that has
at last extended the use of ANN by developing a deep neural network (DNN)
to explain how organic fouling arises in RO membranes. D. Jumaah et al. [23]
utilized the application of artificial neural networks (ANN) in building and
forecasting the performance of home RO systems is investigated. Whereas
the second case forecasts the weight percentage of ANN models depending
on operating parameters such as feed pressure, feed temperature, and feed
concentration. Abdulkareem et al. [24] studied the modeling of water pollu-
tion in Basra using an artificial neural network, a genetic algorithm, and an
annealing simulation method. As the area evolves, the combination of ANNs
with other machine learning techniques and optimization strategies will most
likely produce even more sustainable and efficient desalination technologies,
thus addressing problems of world water scarcity. In the present work, a neural
network model was developed to predict two output variables based on six
input variables. The network aims to establish a reliable predictive model that
can accurately map the relationship between these inputs and outputs using a
supervised learning approach.

Figure 1. Shows the geographical location of the large Basra water desalinati-
on project.

2. Methodology
2.1 Study area
This study was conducted at the large Basra Water Project, located in the
Al-Haritha district of the Basra Governorate in southern Iraq. The facility is

positioned at coordinates 3064′95.00′′ N and 4775′06.1′′ E, Fig. 1, north of
Basra city and west of the Shatt Al-Arab River. A group of firms, including
JICA, OTV, VEOLIA, Hitachi, and Arab contractors, worked together to build
the project on 80 dunums of land in the district. It serves more than two million
people. The building of this factory started in 2014, and it opened for busi-
ness in 2022. This plant can make 200,000 m3 of product every day (8333.33
m3/hr). The goal of the project is to improve the quality and quantity of water
for the communities around it, which have been dealing with problems with
dirty and scarce water for a long time. To make sure that water supplies in the
area are managed in a way that lasts, it uses advanced filtration systems and
regular monitoring. The operations team’s job is to make sure that the UF and
RO membranes work well by getting excellent pretreatment performance.

Figure 2. Essential elements of the Artificial Neural Network(ANN) [16, 17].

Table 1. ANN model input and output variables.

Item Parameter Symbol Unit

Input variables

Pressure P Bar
Temperature T C°

Concentration C f ppm
Flow rate Q f m3/h
Turbidity Turb. NTU

PH PH —

Output variables Permeate flow Qp m3/h
Permeate concentration Cp ppm

2.2 Data description
This study used a neural network model to guess how much permeate will
flow (m3/h) and how concentrated it will be (ppm). The model looked at six
factors: feed pressure (bar), input temperature (C°), flow rate (m3/hr), con-
centration (ppm), feed turbidity (NTU), and pH. This research team collected
the data from the major Basra water project, looked at it, and divided it into
three groups: 80% for training, 10% for validation, and 10% for testing. The
network employs supervised learning to build a reliable model that elucidates
the connections between these inputs and outputs. This uses the nntool and
nftool methods in the MathWorks MATLAB 2024 program to build the best
artificial neural network model. The RO system’s performance has led to the
gathering of 700 days, from Feb. 2023 to Dec. 2024 data sets that show how
things really work. Table 1 and Fig. 3 show this information. Drawn from
the Large Basrah Water Project, Table 2 provides a synopsis of 700 sets of
data regarding the operation of the reverse osmosis (RO) system in real-world
conditions. Using the conditions of the large Basrah water project as what
the model took in, the ANN model examined how well the reverse osmosis
system operated by looking at the permeate flow (m3/h) and concentration
(ppm). Figure 4 illustrates the phases of a MATLAB 24 computer program that
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implements training, validation, and testing procedures for the effectiveness of
training methods for reverse osmosis systems.

Figure 3. Shows the proposed network of the performance of reverse osmosis
system training methods.

Figure 4. The flow chart shows the steps and the overview view the ANN
model.

3. Artificial neural networks (ANN)
Artificial neural networks (ANNs) are mathematical computer models used
in human brain activity identification. Artificial neural network (ANN) tech-
nology can solve problems even in the lack of data, absorb and learn from
continuous data input, and preserve knowledge using up-to-date information.
It can also perform brain activities. Because of their adaptability and deve-
lopment capability, ANNs are especially strong in a wide spectrum of uses,
including image identification, natural language processing, and predictive
analytics. By mimicking the neuronal connections in the brain, these models
can quickly identify patterns and make informed judgments depending on the
input they obtain. The capacity of a neural network to duplicate complex nonli-
near relations without depending on any prior knowledge about the character of
the relation is its fundamental benefit [25]. An ANN is made of many neurons
expressed in many nodes. Whereas the input nodes reflect the independent
variables, the output nodes [26] show the dependent factors. The learning
process is largely aimed at identifying the ideal collection of weights that can
generate the best output for the particular inputs. Calculating the error [2],
helps us to match the network output to the intended reaction. Structures in
neural networks abound. Feedforward and recurrent networks practically could
be confused. From the input nodes through hidden nodes to the output nodes
in feedforward networks, only forward-directed information flows. Recurrent
networks offer connections whereby data can go backwards and forwards
across network node connections. Another name for the recurrent networks
is feedback networks [27]. When historical knowledge about the process or
system model is absent, artificial neural networks (ANN) can map non-linear
connections. Their capacity for ”learningänd modification by example, as well
as their fast detection of structural elements, characterize their advantages over
more conventional mathematical models. ANN modeling cannot substitute
a complete knowledge of process behaviour, even if it helps to rapidly build
models for complicated reactions. The choice of process elements, the acquired
data, and the training area used primarily impact the efficacy of establishing
a strong and reliable network. Comprehensive evaluation of these elements
is essential for good model training to guarantee that the network can reach a
suitable degree to fresh data. Furthermore, adjustments and continuous valida-
tion may be necessary to maintain the projections’ quality and accuracy as new
data becomes available. Recently, there has been a lot of interest in artificial
neural networks (ANN). In the real world, it is used in a variety of fields, inclu-
ding oil drilling, engineering, industrial processes, mathematical models, and
equations. Artificial neural networks help computers operate as they should.
Usually, very non-linear model generations and estimations demand complex,
large-scale environments. Thus, one can project the performance of the reverse
osmosis system using an ANN. Three layers define artificial neural networks
of the reverse osmosis process: an input layer, an output layer, and a hidden
layer. Neurons at the input layer must first obtain outside data before sending it
to the network’s processors for study [28]. A neuron at the bottom gathers and
processes the data sent from the input layer to the hidden layer before reacting
[29]. Figure 2 depicts the essential elements of a neural network, including
inputs and outputs, weighting variables, bias, and activation function [30].

4. Back propagation algorithm (BP)
Backpropagation (BP) is the most often used among the several learning tech-
niques available for every neural network model. We apply this approach in
supervised learning [25]. BP’s main training concept modifies weights to lower
mean square error (MSE) based on the gradient descent approach [31]. The BP
algorithm is defined in two phases: forward and reverse phases. The algorithm
distributes the network input data forward to the next level, and so on. The
network fault is calculated following the forward phase. The network fault is
spread backwards in the backward phase; hence, the weights undergo change
[32]. Figure 2 shows three layers, each with n neurons, which make up the
network architecture. The number of input variables determines the first layer,
that of neurons. Receiving outside world input, this layer forwards it unaltered
to the hidden layer. Usually referred to as hidden layers, intermediate layers
have only weak ties to the outside world. The output layer’s activation function
carries summed individual values from the previous layer. The input layer
receives the output and updates it with additional weight and bias, if necessary,
within a specified error tolerance. Interestingly, nodes on the same layer do
not have any connections to each other. This cycle will continue until all the
limitations have been met. Once the limitations have been met, the model
undergoes a final evaluation to ensure its accuracy and effectiveness in making
predictions. Any necessary adjustments can be made during this phase, refining
the weights and biases to enhance performance before deployment [33].
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Table 2. Shows the actual data of the RO system used in the ANN model.

Date Pressure (Bar) Temperature (C°) Q f (m3/h) C f (ppm) Turb (NTU) PH Qp (m3/h) Cp (ppm)
1-Feb-23 20.74 15.20 4208.48 2681 0.223 7.84 3308.82 37
2-Feb-23 15.33 15.20 5319.20 2220 0.089 7.94 4192.07 32
3-Feb-23 20.58 15.60 4255.36 1682 0.211 8.03 3348.21 21
4-Feb-23 20.92 15.55 3068.57 1720 0.201 7.93 3197.88 22
5-Feb-23 21.26 15.50 4326.65 1732 0.213 7.91 3408.50 20
6-Feb-23 21.64 15.80 4379.90 1789 0.235 8.09 3450.83 22
7-Feb-23 15.97 15.60 4390.39 1790 0.091 7.98 3452.67 24
8-Feb-23 21.25 15.80 4397.27 1934 0.108 8.05 3458.22 23
9-Feb-23 15.69 14.60 5425.77 1900 0.164 8.07 4280.04 23
10-Feb-23 21.32 15.20 5297.28 1789 0.166 8.05 4182.83 24
11-Feb-23 21.19 15.50 5368.92 1958 0.112 8.17 4240.05 36
12-Feb-23 21.21 15.40 5273.77 2028 0.143 8.11 4161.12 23

Table 3. Shows MSE, R, and Epoch for the one hidden layer of different ANN training algorithms.

No. of Neuron Item Trainlm Trainbr Trainrp Traingdx Traingda Trainoss Trainscg

15
R 0.96184 0.97265 0.94828 0.9202 0.84276 0.93668 0.92265

MSE 0.14779 0.046283 0.14404 0.20906 0.34904 0.16482 0.19346
Epoch 6 233 54 115 56 53 33

17
R 0.97055 0.97825 0.94104 0.90863 0.86366 0.92864 0.93471

MSE 0.10702 0.039414 0.2072 0.18739 0.27171 0.14684 0.132
Epoch 15 167 79 101 152 57 49

19
R 0.95865 0.97824 0.95319 0.90351 0.81926 0.93558 0.91954

MSE 0.060104 0.03882 0.081722 0.18164 0.35304 0.11517 0.14735
Epoch 4 146 118 89 97 59 49

21
R 0.97133 0.97527 0.94713 0.89767 0.84096 0.93959 0.94073

MSE 0.069902 0.033935 0.1043 0.1963 0.30549 0.1008 0.10054
Epoch 17 664 124 94 139 80 57

23
R 0.9699 0.97855 0.94413 0.88372 0.83023 0.92548 0.93921

MSE 0.072116 0.033577 0.11525 0.27594 0.35964 0.16575 0.12774
Epoch 8 524 126 85 196 58 78

25
R 0.97167 0.98268 0.94458 0.89678 0.82992 0.93753 0.94212

MSE 0.085148 0.030188 0.1271 0.20939 0.28815 0.12331 0.10969
Epoch 7 363 110 106 160 71 64

27
R 0.97262 0.97739 0.95099 0.42424 0.79523 0.93096 0.92305

MSE 0.043659 0.028932 0.090101 2.1684 0.36407 0.1282 0.10966
Epoch 24 327 137 16 168 58 36

29
R 0.96584 0.9799 0.94966 0.88578 0.79207 0.91342 0.94035

MSE 0.087291 0.022342 0.10591 0.23676 0.48803 0.17154 0.11473
Epoch 4 232 94 90 136 47 55

Figure 5. Shows the weight percentages of operating conditions.

5. Results and discussion
This part models the performance of the reverse osmosis system by means of
neural networks with a single hidden layer. Seven training algorithms, Traing-
dx, Trianscg, Trainoss, Trainrp, Traingda, Trainbr, and Trainlm, have been
investigated and tested to ascertain the optimal strategy for the performance of
the reverse osmosis system network. That also probes different node counts for
every method. We probe the performance of the artificial neural network(ANN)
by increasing the number of hidden nodes, as indicated in Table 3. Bayesian
regularization backpropagation with 25 nodes in the hidden layer outperforms
other networks with varying node counts. The results of the Bayesian model
show this is so because it attained a lower MSE of 0.030188 and a higher
regression value of 0.98268 than in other models. Furthermore investigated
are different numbers of nodes for different algorithms to determine the best
approach for reverse osmosis system performance. The hidden and output
layers are respectively set active by the hyperbolic tangent (tansig) and linear
(purelin) functions. Following our investigation on the ideal activation functi-
ons (tansig, purelin) for showing data on the performance of the RO system,
we then raised the number of neurons from 1 to 25 in increments of 2. This
work intends to improve the correlation between the actual and expected values
for Qp and Cp as well as increase the accuracy of the artificial neural network
model evaluating the RO system. This is thus in contrast to other regularization
backpropagation outperforms networks with varying numbers of nodes in the
hidden layer. When looking at the different methods used in ANN mode, the
Bayesian regularization backpropagation (trainbr) method shows the smallest
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Table 4. Training of ANN models with various neurons and transfer functions.

No. of
Neuron Item (Tansig, Tansig) Equation (Tansig, Logsig) Equation (Tansig, Purelin) Equation

15
R 0.9764

0.95×T +0.00067
0.79291

0.51×T +0.38
0.97265

0.95×T −2.5e−05MSE 0.044646 0.54068 0.046283
Epoch 254 293 233

17
R 0.9767

0.9×T −0.0053
0.79227

0.51×T +0.38
0.97825

0.96×T −0.00071MSE 0.041223 0.55664 0.039414
Epoch 227 293 167

19
R 0.97923

0.96×T −0.0025
0.79319

0.51×T +0.38
0.97824

0.96×T −0.0019MSE 0.035495 0.54617 0.03882
Epoch 179 767 146

21
R 0.97639

0.95×T −0.0029
0.79273

0.51×T +0.38
0.97527

0.96×T −0.002MSE 0.035209 0.51221 0.033935
Epoch 275 255 664

23
R 0.98193

0.96×T +0.00052
0.79295

0.51×T +0.38
0.97855

0.96×T +0.0035MSE 0.030255 0.54221 0.033577
Epoch 341 943 524

25
R 0.98135

0.96×T −0.0062
0.79271

0.51×T +0.38
0.98268

0.97×T −0.0045MSE 0.031727 0.55283 0.030188
Epoch 354 450 363

mean square error (MSE) and the best correlation between the actual and
predicted values of Qp and Cp in the training data set. Moreover, we could
show the favorable results of the (trainlm) method.

Figure 6. Displays the MSE for training and testing by a neural network with
11 hidden neurons for the ( Tansig, Purelin) transfer function.

Furthermore, the many kinds of activation functions influence the performance
of the neural network model in reverse osmosis since some of them do not re-
ach the optimal MSE and regression. As such, we look into several output and
hidden layer activation methods. Table 4 shows the MSE, R and Epoch values
via different transfer functions. Among the activation function settings are(
Tansig, Tansig); (Tansig, Logsig); (Tansig, Purelin). When one hidden layer

in an artificial neural network is utilized, networks with a (Tansig, Purelin)
structure can offer the best performance and regression as the shaded cell in
Table 4 demonstrates.

Table 5. Shows comparison between the predicted and experimental data of
Qp and Cp.

Experimental
Qp

Predicted data
of Qp

Experimental
CP

Predicted data
of Cp

3308.82 3277.02 37 40.890
2910.94 2961.60 68 62.770
3398.35 3368.96 73 69.669
2351.69 2327.45 65 68.810

With 25 hidden neurons and a transfer function of ”Tansig, Purelin,”the findings
show how a neural network may present better information display from the
large Basrah water treatment plant. Perfect for simulating complex systems like
water movement and quite successful at spotting minor, non-linear connections
in enormous amounts of data are neural networks. These models’ structure
allows them to learn from a lot of data and create more accurate forecasts and
insights than more outmoded modeling methods. Hidden neurons since the
model generated a lower MSE (0.051527) show that in Fig. 6 and a higher
regression value for Qp and Cp (0.98268, 0.95464). The optimal equation for
regassing real and expected data shows in Fig. 7 for Qp and Cp are Eq. 1 and
Eq. 2, respectively.

(Qp)ANN = 1× (Qp)Actual +14 (1)

(Cp)ANN = 0.94× (Cp)Actual +1.7 (2)

Table 6. Demonstrates how to train ANN models with No. of neuron to activation function (Tansig, Purelin).

No. of Neuron Target MSE Epoch Testing R Equation
9 Qp 0.059649 138 0.99891 Out put = 1.00×Target +00.58

Cp 0.92693 Out put = 0.95×Target +03.20

11 Qp 0.051527 245 0.99892 Out put = 1.00×Target +14.00
Cp 0.95464 Out put = 0.94×Target +01.70

13 Qp 0.048733 325 0.99848 Out put = 0.99×Target +14.00
Cp 0.87006 Out put = 0.85×Target +07.60

15 Qp 0.046283 233 0.99862 Out put = 0.99×Target +21.00
Cp 0.85220 Out put = 0.79×Target +14.00

17 Qp 0.039414 167 0.99818 Out put = 1.00×Target −13.00
Cp 0.89180 Out put = 0.91×Target +05.20

19 Qp 0.03882 146 0.98275 Out put = 1.00×Target +21.00
Cp 0.89929 Out put = 0.94×Target +02.30
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We trained the neural network on a dataset of 700 samples, dividing the data
into training (80%), validation (10%), and testing (10%) sets. The results from
the testing data show a strong correlation and a low root mean squared error
(RMSE), which means the model is performing well. Specifically, the testing
performance was:

QP Out put : R = 0.99892 ⇒ RMSE = 27.5389
CP Out put : R = 0.95464 ⇒ RMSE = 06.9029

The high correlation for QP suggests that the model effectively captures the
underlying relationships for this variable, whereas CP, while still accurate, has
a slightly lower correlation, indicating some complexity in prediction. Also,
the results indicate that the weight percentages of the following operational
conditions are, respectively, 2.94%, 17%, 42.94%, 28.23%, 6.72%, and 2.17%:
pressure, temperature, feed flow, feed concentration, turbidity, and PH accor-
ding to the data in Fig. 5. The findings indicate that the Ro intake feed flow
has the greatest influence on the RO system’s performance and the caliber of
Qp and Cp when compared to other factors. Table 5 comparison between the
predicted and experimental data of Qp and Cp. Table 6 presents the highest
R test ratio for Qp and Cp. Presenting data from the RO system proved that
a neural network with 11 hidden neurons for the transfer function (Tansig,
Purelin) was the best model.

(a) Output 01

(b) Output 02

Figure 7. Shows exact QP, Cp vs predicted QP, Cp.

6. Conclusions
This work runs the predictive model using the performance operating con-
ditions of the reverse osmosis system from the large Basrah water project.
Although feed pressure (bar), inlet temperature (C°), flow rate (m3/h), concen-
tration (ppm), feed turbidity (NTU), and pH are its input variables, the output
variables of the ANN model are permeate flow (m3/h) and concentration. This
work made use of several feed-forward and feedback propagation layers in
neural networks. Seven training strategies were analyzed in order to identify
the most successful one. Projecting the performance of the reverse osmosis
model seems to be optimal using Bayesian regularization backpropagation.
While taking into account hidden layer count, hidden layer nodes, and transfer
functions. Whereas Bayesian regularization backpropagation (Trainbr) delivers
the lowest mean square error for the hidden layer, the transfer functions (Tansig,
Purelin) produce the best results for the output layer, both during testing and

training. This implies that the choice of the transfer function determines, most
importantly, the maximum performance of the model. Future studies should
look at other transfer functions and their likely impact on boosting general
accuracy and dependability in reverse osmosis estimates. A neural network
with 11 hidden neurons using the transfer functions (Tansig, Purelin) was
found to be the best model for displaying data on the RO system’s performance.
Because in relation to other hidden neurons, the model produced a lower MSE
(0.051527) and a higher regression value for Qp and Cp (0.98268 and 0.95464,
respectively). The ANN model also demonstrated the following weight percen-
tages for various operational circumstances: 2.94% pressure, 17% temperature,
42.94% feed flow, 28.23% feed concentration, 6.72% turbidity, and 2.17%
pH. Lower MSE and better regression values during ANN model training and
testing indicate exceptionally high-quality data. This remarkable capability
ensures that the model can adapt to new data efficiently and provide accurate
estimates. Additionally, it highlights the importance of choosing the proper
preprocessing methods and features to enhance model performance.
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