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This study evaluates the operational performance of the Large Basrah Water Project (LBWP) from February ~md
1, 2023, to December 31, 2024, using an artificial neural network to predict reverse osmosis processes and
analyze factors influencing permeability and concentration polarization. This trains and tests the Artificial Neural
Network (ANN) model using a dataset comprised of 700 items and divides it into three groups: 80% for training,
10% for validation, and 10% for testing. The developed neural network model successfully predicts the output
variables Q, and C, based on these six input variables: Feed Pressure, Temperature, Qy, Cyr, Turb, and PH.
Using Bayesian regularization backpropagation, the model demonstrated excellent predictive performance for
0, with high correlation (R=0.98268) and low error metrics (RMSE =27.5389). While the prediction for C;
was slightly less accurate (R=0.95464 and RMSE=6.9029), the overall model performance remains robust and o
reliable. This approach provides a valuable predictive tool for understanding and optimizing the underlying system
behavior based on the selected input parameters. Furthermore, the ANN model indicates that the related weights

cep

WAC

for temperature, pressure, feed water flow rates, feed water salinity, turbidity, and pH are 17%, 2.94%,42.94%,
28.23%, 6.72%, and 2.17%, respectively. These results imply that using the training datasets, the model fairly
forecasts the concentration and flow of permeate. ® yumy
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1. Introduction

Artificial Neural Networks (ANN) are a form of computational models
inspired by the human brain’s networks of neurons [1]. A broad spectrum of
scientific disciplines have recently benefited from the neural network approach.
Environmental scientists and water engineers have been using ANNSs since
the dawn of the 1990s. The Artificial Neural Network (ANN) is a beneficial
approach, having a flexible mathematical structure capable of detecting com-
plicated nonlinear correlations among both the input and output data when
compared with standard modeling methods [2]. They are used rather well
to forecast the water quality of certain aquatic bodies. When John Holland
initially proposed the fundamental idea of genetic algorithms in 1975, while
presenting the Adaptive Systems Theory at Michigan University, a theory of
adaptive systems. Inspired by concepts of natural selection and evolution, his
creative work prepared the stage for a novel approach to optimization and
problem-solving. Since then, this initial concept has evolved into a powerful
tool in numerous fields like artificial intelligence, engineering, and economics
[3,4]. The genetic algorithm is a searching method depending on Darwin’s
theory of evolution. This method replicates natural selection, in which the
best-adapted individuals are selected for reproduction to generate the following
generation’s progeny. Genetic algorithms effectively search a large solution
space to identify optimal or near-optimal outcomes for difficult problems by
iteratively selecting, merging, and altering solutions [5]. ANNSs in engineering
are used as flexible function approximators that learn a complex nonlinear
relationship from the data. Current uses of ANNs with RO systems include
modeling the performance based on input parameters (flux, salt rejection, and
fouling rates) to predict the performance, as well as to optimize the performance
of RO processes, whether no analytical model exists or one is too cumbersome
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[1,6]. This section summarizes the application of ANNs for RO modelling or g
optimization. Al-Shayji [7] identified significant operational parameters that Cc
contribute to optimal performance and projected the large-scale effectivenes

of spraying using the ANN model combined with statistical methods. Rem-
laoui et al.[8] This study presents a computational model for solar-powere
desalination using photovoltaic/thermal collectors and membrane distillation.
Rashida et al.[9] The study investigates the impact of operating conditions‘U
on the removal of heavy and radioactive elements from an aqueous solution Q)
containing Phosphogypsum using a Reverse Osmosis Membrane. Jafar, [10], ~N—
proposed Ann’s integration with an uncertain argument for creating an intelli- Q{
gent control system aimed at maximizing the performance of calm, continuous
plants. This mix allows real-time changes to raise operational effectiveness..
Similarly, Ballello et al. [11] found that one can forecast membrane fouling and
recovery after cleaning by using applied ANN models, an essential component

for preserving system performance. Mjalli et al. [12] This study uses artificial o
neural network (ANN) black-box modeling to predict wastewater treatmen

plant performance. The model accurately captures plant operation characteri-
stics, minimizing costs and assessing environmental balance. Lee et al. [13,14]
studied an artificial neural network (ANN) model developed with flow rate

for reverse osmosis (SWRO) and imitated developed water temperature and
transmembrane pressure (TMP). To paint the mass flow in the diaphragm of

the RO system, Zhao et al. [15] integrated ANN with a modified solution
diffusion model; the predictions exceeded the pre-model. Additionally, Aish et

al. [16, 17] ANN were used to predict the performance of the RO system when
saltwater treatment, active adjustment, and future maintenance are allowed,

by predicting the performance of the system under different feed conditions.

In addition, a more accurate procedure is produced at the RO system with
simulation ANNS.
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Nomenclature

ANN Artificial Neural Network
BP Back Propagation

Cp Permeate concentration
Cr Feed concentration
RMSE  Root mean squared error
P Pressure of feed

Purelin  Linear Function

MSE Mean square error

0 Permeate flow

Oy Feed flowrate

PH Acidity/alkalinity of feed water
R Regression

w Weight

LBWP  Large Basrah Water Project

T Temperature of feed

Turb. Turbidity

Trainbr  Bayesian regularization backpropagation.

Traingda Gradient descent algorithm

Trainoss Algorithm for one-step backpropagation.

Trainlm Levenberg - Marquardt Algorithm

Trainrp  Resilient algorithm

Traingdx Gradient Descent with Momentum and Adaptability.
Trainscg Backpropagation technique with a scaled conjugate gradient.
Turb Feed turbidity

Tang-sig Tangent hyperbolic function.

RO Reverse osmosis, which is a water purification process.

t

To simulate calm uninterruptedness, Khayet et al. [18], for example, compared
the efficacy of ANN with response surface methodology (RSM). Murthy and
Vora [19] repeated the efficacy of ANNs in modeling dynamic RO systems.
Moreover, K. Mohd et al. [20] projected membrane pore size with ANNs vital
information for membrane filtration. Using geographical fouling data, Park et
al. [21] developed a deep neural network (DNN) to model membrane fouling
during nanofiltration and reverse osmosis filtration using in-situ fouling image
data from optical coherence tomography (OCT). Abuwatfa et al. [22] using
ANN models in RO systems marks significant progress in desalination that has
at last extended the use of ANN by developing a deep neural network (DNN)
to explain how organic fouling arises in RO membranes. D. Jumaah et al. [23]
utilized the application of artificial neural networks (ANN) in building and
forecasting the performance of home RO systems is investigated. Whereas
the second case forecasts the weight percentage of ANN models depending
on operating parameters such as feed pressure, feed temperature, and feed
concentration. Abdulkareem et al. [24] studied the modeling of water pollu-
tion in Basra using an artificial neural network, a genetic algorithm, and an
annealing simulation method. As the area evolves, the combination of ANNs
with other machine learning techniques and optimization strategies will most
likely produce even more sustainable and efficient desalination technologies,
thus addressing problems of world water scarcity. In the present work, a neural
network model was developed to predict two output variables based on six
input variables. The network aims to establish a reliable predictive model that
can accurately map the relationship between these inputs and outputs using a
supervised learning approach.
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Figure 1. Shows the geographical location of the large Basra water desalinati-
on project.

2. Methodology

2.1 Study area

This study was conducted at the large Basra Water Project, located in the
Al-Haritha district of the Basra Governorate in southern Iraq. The facility is
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positioned at coordinates 3064'95.00” N and 4775'06.1" E, Fig. 1, north of
Basra city and west of the Shatt Al-Arab River. A group of firms, including A
JICA, OTV, VEOLIA, Hitachi, and Arab contractors, worked together to build

the project on 80 dunums of land in the district. It serves more than two million :
people. The building of this factory started in 2014, and it opened for busi-

ness in 2022. This plant can make 200,000 3 of product every day (8333.33
m? /hr). The goal of the project is to improve the quality and quantity of wate;
for the communities around it, which have been dealing with problems with
dirty and scarce water for a long time. To make sure that water supplies in th
area are managed in a way that lasts, it uses advanced filtration systems an
regular monitoring. The operations team’s job is to make sure that the UF and
RO membranes work well by getting excellent pretreatment performance.
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Figure 2. Essential elements of the Artificial Neural Network(ANN) [16, 17].
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Table 1. ANN model input and output variables.

Item Parameter Symbol Unit N
Pressure P Bar :
Temperature T C° g

Input variables Concentration Cr p[;m
Flow rate o) m®/h Cc

Turbidity Turb. NTU
PH PH — 2

3

Output variables Permeate flow . Qp m’ [h

[Permeate concentration Cp ppm N

2.2 Data description

This study used a neural network model to guess how much permeate will
flow (m? /h) and how concentrated it will be (ppm). The model looked at six
factors: feed pressure (bar), input temperature (C°), flow rate m? /hr), con-
centration (ppm), feed turbidity (NTU), and pH. This research team collected o
the data from the major Basra water project, looked at it, and divided it into
three groups: 80% for training, 10% for validation, and 10% for testing. The Q
network employs supervised learning to build a reliable model that elucidate:<
the connections between these inputs and outputs. This uses the nntool and
nftool methods in the MathWorks MATLAB 2024 program to build the best
artificial neural network model. The RO system’s performance has led to the
gathering of 700 days, from Feb. 2023 to Dec. 2024 data sets that show how
things really work. Table 1 and Fig. 3 show this information. Drawn from
the Large Basrah Water Project, Table 2 provides a synopsis of 700 sets of
data regarding the operation of the reverse osmosis (RO) system in real-world
conditions. Using the conditions of the large Basrah water project as what
the model took in, the ANN model examined how well the reverse osmosis
system operated by looking at the permeate flow (3 /h) and concentration
(ppm). Figure 4 illustrates the phases of a MATLAB 24 computer program that

ept
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implements training, validation, and testing procedures for the effectiveness of
training methods for reverse osmosis systems.

Hidden layer

Input layer Output layer

Figure 3. Shows the proposed network of the performance of reverse osmosis
system training methods.

Enter all training data
(P, T,Qs,Cs Turb., PH, Q,,Cp)

Pre-processes of training
data

Enter the hidden layers
and numbers of node

Enter the training function

Simulated of neural network

Estimate the training error

if error<1072

Check and test data and Print (R,
MSE, Biases and Weights)

Figure 4. The flow chart shows the steps and the overview view the ANN
model.

QJES

Since 2008

3. Artificial neural networks (ANN)

Artificial neural networks (ANNs) are mathematical computer models used
in human brain activity identification. Artificial neural network (ANN) tech-
nology can solve problems even in the lack of data, absorb and learn from
continuous data input, and preserve knowledge using up-to-date information.
It can also perform brain activities. Because of their adaptability and deve-
lopment capability, ANNs are especially strong in a wide spectrum of uses,
including image identification, natural language processing, and predictive
analytics. By mimicking the neuronal connections in the brain, these models
can quickly identify patterns and make informed judgments depending on the
input they obtain. The capacity of a neural network to duplicate complex nonli-
near relations without depending on any prior knowledge about the character of
the relation is its fundamental benefit [25]. An ANN is made of many neuronse ys={
expressed in many nodes. Whereas the input nodes reflect the independent ;—1
variables, the output nodes [26] show the dependent factors. The learning O
process is largely aimed at identifying the ideal collection of weights that can )
generate the best output for the particular inputs. Calculating the error [2],
helps us to match the network output to the intended reaction. Structures in :
neural networks abound. Feedforward and recurrent networks practically could g
aw

t

be confused. From the input nodes through hidden nodes to the output nodes

in feedforward networks, only forward-directed information flows. Recurrent
networks offer connections whereby data can go backwards and forward:
across network node connections. Another name for the recurrent networks

is feedback networks [27]. When historical knowledge about the process o
system model is absent, artificial neural networks (ANN) can map non—lineaqU
connections. Their capacity for "learningéind modification by example, as well

as their fast detection of structural elements, characterize their advantages over
more conventional mathematical models. ANN modeling cannot substitute <+
a complete knowledge of process behaviour, even if it helps to rapidly build Q‘
models for complicated reactions. The choice of process elements, the acquired Q)
data, and the training area used primarily impact the efficacy of establishing

a strong and reliable network. Comprehensive evaluation of these elements

is essential for good model training to guarantee that the network can reach a
suitable degree to fresh data. Furthermore, adjustments and continuous valida-

tion may be necessary to maintain the projections’ quality and accuracy as new<

data becomes available. Recently, there has been a lot of interest in artificial N

neural networks (ANN). In the real world, it is used in a variety of fields, inclu- °
ding oil drilling, engineering, industrial processes, mathematical models, and N

equations. Artificial neural networks help computers operate as they should.
Usually, very non-linear model generations and estimations demand complex, Q‘
large-scale environments. Thus, one can project the performance of the reverse® =
osmosis system using an ANN. Three layers define artificial neural networks

of the reverse osmosis process: an input layer, an output layer, and a hidden

layer. Neurons at the input layer must first obtain outside data before sending it

to the network’s processors for study [28]. A neuron at the bottom gathers and
processes the data sent from the input layer to the hidden layer before reacting :
[29]. Figure 2 depicts the essential elements of a neural network, including g
inputs and outputs, weighting variables, bias, and activation function [30]. CG

4. Back propagation algorithm (BP) 2

Backpropagation (BP) is the most often used among the several learning tech!U
niques available for every neural network model. We apply this approach in
supervised learning [25]. BP’s main training concept modifies weights to lower
mean square error (MSE) based on the gradient descent approach [31]. The BP
algorithm is defined in two phases: forward and reverse phases. The algorithm
distributes the network input data forward to the next level, and so on. The
network fault is calculated following the forward phase. The network fault is o
spread backwards in the backward phase; hence, the weights undergo change

[32]. Figure 2 shows three layers, each with n neurons, which make up the o
network architecture. The number of input variables determines the first layer<
that of neurons. Receiving outside world input, this layer forwards it unaltered

to the hidden layer. Usually referred to as hidden layers, intermediate layers

have only weak ties to the outside world. The output layer’s activation function
carries summed individual values from the previous layer. The input layer
receives the output and updates it with additional weight and bias, if necessary,
within a specified error tolerance. Interestingly, nodes on the same layer do

not have any connections to each other. This cycle will continue until all the
limitations have been met. Once the limitations have been met, the model
undergoes a final evaluation to ensure its accuracy and effectiveness in making
predictions. Any necessary adjustments can be made during this phase, refining

the weights and biases to enhance performance before deployment [33].
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Table 2. Shows the actual data of the RO system used in the ANN model.

Date Pressure (Bar) Temperature (C°)  Q; (m° /h) Cy (ppm) Turb (NTU) PH 0, m’/h) C, (ppm)
1-Feb-23 20.74 15.20 4208.48 2681 0.223 7.84 3308.82 37
2-Feb-23 15.33 15.20 5319.20 2220 0.089 7.94 4192.07 32
3-Feb-23 20.58 15.60 4255.36 1682 0.211 8.03 3348.21 21
4-Feb-23 20.92 15.55 3068.57 1720 0.201 7.93 3197.88 22
5-Feb-23 21.26 15.50 4326.65 1732 0.213 791 3408.50 20
6-Feb-23 21.64 15.80 4379.90 1789 0.235 8.09 3450.83 22
7-Feb-23 15.97 15.60 4390.39 1790 0.091 7.98 3452.67 24
8-Feb-23 21.25 15.80 4397.27 1934 0.108 8.05 3458.22 23
9-Feb-23 15.69 14.60 5425.77 1900 0.164 8.07 4280.04 23
10-Feb-23 21.32 15.20 5297.28 1789 0.166 8.05 4182.83 24
11-Feb-23 21.19 15.50 5368.92 1958 0.112 8.17 4240.05 36
12-Feb-23 21.21 15.40 5273.77 2028 0.143 8.11 4161.12 23

Table 3. Shows MSE, R, and Epoch for the one hidden layer of different ANN training algorithms.

pe
=
Q
=
No. of Neuron Item Trainlm Trainbr Trainrp Traingdx Traingda Trainoss Trainscg Cs
R 0.96184 0.97265 0.94828 0.9202 0.84276 0.93668 0.92265
15 MSE 0.14779 0.046283 0.14404 0.20906 0.34904 0.16482 0.19346
Epoch 6 233 54 115 56 53 33
R 0.97055 0.97825 0.94104 0.90863 0.86366 0.92864 0.93471 ‘U
17 MSE 0.10702 0.039414 0.2072 0.18739 0.27171 0.14684 0.132
Epoch 15 167 79 101 152 57 49 Q)
R 0.95865 0.97824 0.95319 0.90351 0.81926 0.93558 0.91954 N
19 MSE 0.060104 0.03882 0.081722 0.18164 0.35304 0.11517 0.14735 Q‘
Epoch 4 146 118 89 97 59 49 q)
R 0.97133 0.97527 0.94713 0.89767 0.84096 0.93959 0.94073
21 MSE 0.069902 0.033935 0.1043 0.1963 0.30549 0.1008 0.10054 O
Epoch 17 664 124 94 139 80 57 o
R 0.9699 0.97855 0.94413 0.88372 0.83023 0.92548 0.93921
23 MSE 0.072116 0.033577 0.11525 0.27594 0.35964 0.16575 0.12774 <
Epoch 8 524 126 85 196 58 78 °
R 0.97167 0.98268 0.94458 0.89678 0.82992 0.93753 0.94212 :
25 MSE 0.085148 0.030188 0.1271 0.20939 0.28815 0.12331 0.10969 N
Epoch 7 363 110 106 160 71 64 Q{
R 0.97262 0.97739 0.95099 0.42424 0.79523 0.93096 0.92305
27 MSE 0.043659 0.028932 0.090101 2.1684 0.36407 0.1282 0.10966  ° ;
Epoch 24 327 137 16 168 58 36
R 0.96584 0.9799 0.94966 0.88578 0.79207 0.91342 0.94035 Q
29 MSE 0.087291 0.022342 0.10591 0.23676 0.48803 0.17154 0.11473 N
Epoch 4 232 94 90 136 47 55 :
av
T — PH=2.17% o 5. Results and discussion z
This part models the performance of the reverse osmosis system by means o
S neural networks with a single hidden layer. Seven training algorithms, Traing-
° dx, Trianscg, Trainoss, Trainrp, Traingda, Trainbr, and Trainlm, have been‘U
investigated and tested to ascertain the optimal strategy for the performance of Q)
the reverse osmosis system network. That also probes different node counts for N
every method. We probe the performance of the artificial neural network(ANN)
Cf=28.23%

Qf=42.94%

Figure 5. Shows the weight percentages of operating conditions.
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by increasing the number of hidden nodes, as indicated in Table 3. Bayesian
regularization backpropagation with 25 nodes in the hidden layer outperforms
other networks with varying node counts. The results of the Bayesian model o
show this is so because it attained a lower MSE of 0.030188 and a higher
regression value of 0.98268 than in other models. Furthermore investigated Q
are different numbers of nodes for different algorithms to determine the bes\<
approach for reverse osmosis system performance. The hidden and output
layers are respectively set active by the hyperbolic tangent (tansig) and linear
(purelin) functions. Following our investigation on the ideal activation functi-
ons (tansig, purelin) for showing data on the performance of the RO system,
we then raised the number of neurons from 1 to 25 in increments of 2. This
work intends to improve the correlation between the actual and expected values
for Q) and C), as well as increase the accuracy of the artificial neural network
model evaluating the RO system. This is thus in contrast to other regularization
backpropagation outperforms networks with varying numbers of nodes in the
hidden layer. When looking at the different methods used in ANN mode, the
Bayesian regularization backpropagation (trainbr) method shows the smallest
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Table 4. Training of ANN models with various neurons and transfer functions.

l\ll\i (:l'r(:)i Item (Tansig, Tansig) Equation (Tansig, Logsig) Equation  (Tansig, Purelin) Equation
R 0.9764 0.79291 0.97265
15 MSE 0.044646 0.95 x T +0.00067 0.54068 0.51 xT+0.38 0.046283 0.95x T —2.5¢~%
Epoch 254 293 233
R 0.9767 0.79227 0.97825
17 MSE 0.041223 0.9 x T —0.0053 0.55664 0.51 xT+0.38 0.039414 0.96 x T —0.00071
Epoch 227 293 167
R 0.97923 0.79319 0.97824
19 MSE 0.035495 0.96 x T —0.0025 0.54617 0.51 xT+0.38 0.03882 0.96 x T —0.0019 =
Epoch 179 767 146 Q{
R 0.97639 0.79273 0.97527 o |
21 MSE 0.035209 0.95 x T —0.0029 0.51221 0.51 xT+0.38 0.033935 0.96 x T —0.002 ;—1
Epoch 275 255 664 Q
R 0.98193 0.79295 0.97855 N
23 MSE 0.030255 0.96 x T +0.00052 0.54221 0.51 xT+0.38 0.033577 0.96 x T +0.0035
Epoch 341 943 524 :
R 0.98135 0.79271 0.98268 g
25 MSE 0.031727 0.96 x T —0.0062 0.55283 0.51 xT+0.38 0.030188 0.97 x T —0.0045 Cc
Epoch 354 450 363
mean square error (MSE) and the best correlation between the actual and in an artificial neural network is utilized, networks with a (Tansig, Purelinz

predicted values of Q), and C), in the training data set. Moreover, we could
show the favorable results of the (trainlm) method.

100 ]
Train
é Test
V| Best
o] H
5 H
= |
02 b
g :
g :
= 5

_______________ Q

0.01k : ‘ ‘ ‘ i

0 50 100 150 200 250

Epochs

Figure 6. Displays the MSE for training and testing by a neural network with
11 hidden neurons for the ( Tansig, Purelin) transfer function.

Furthermore, the many kinds of activation functions influence the performance
of the neural network model in reverse osmosis since some of them do not re-
ach the optimal MSE and regression. As such, we look into several output and
hidden layer activation methods. Table 4 shows the MSE, R and Epoch values
via different transfer functions. Among the activation function settings are(
Tansig, Tansig); (Tansig, Logsig); (Tansig, Purelin). When one hidden layer

structure can offer the best performance and regression as the shaded cell i
Table 4 demonstrates.

ted

Table 5. Shows comparison between the predicted and experimental data of
Qp and Cp,.

Experimental | Predicted data Experimental Predicted data ®

0, of 0, Cp of C, Q

3308.82 3277.02 37 40.890 o
2910.94 2961.60 68 62.770

3398.35 3368.96 73 69.669 <

2351.69 2327.45 65 68.810 o

[ ]

[ ]

With 25 hidden neurons and a transfer function of "Tansig, Purelin,”the findings
show how a neural network may present better information display from the
large Basrah water treatment plant. Perfect for simulating complex systems like.
water movement and quite successful at spotting minor, non-linear connections
in enormous amounts of data are neural networks. These models’ structure
allows them to learn from a lot of data and create more accurate forecasts and O
insights than more outmoded modeling methods. Hidden neurons since the s
model generated a lower MSE (0.051527) show that in Fig. 6 and a higher
regression value for O, and C,, (0.98268, 0.95464). The optimal equation for
regassing real and expected data shows in Fig. 7 for Q), and C), are Eq. 1 and

Eq. 2, respectively.

t

rip

(Qp)ANN = 1 x (Q,)Actual + 14 (1)

o
O

Ma

(Cp)ANN =0.94 x (Cp)Actual +1.7

Table 6. Demonstrates how to train ANN models with No. of neuron to activation function (Tansig, Purelin). a
No. of Neuron Target MSE Epoch Testing R Equation Q)
T N A
0 0, 0051527 23 099892 Output = 1.00 x Target + 14.00 Q
Cp 0.95464 Out put = 0.94 x Target +01.70 <
1 g 0048733 325 087005 Outpud — 055 % Targer - 0760
1 & 0046283 233 D820 Outpt — 0.9 % Targe - 1400
17 it 0035414 167 DROIR0  Outpur — 091 x Turger+ 0520
19 & 003882 146 089995 Output 094 % Targe 0230
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We trained the neural network on a dataset of 700 samples, dividing the data
into training (80%), validation (10%), and testing (10%) sets. The results from
the testing data show a strong correlation and a low root mean squared error
(RMSE), which means the model is performing well. Specifically, the testing
performance was:

QOp Output : R =0.99892 =
Cp Output : R = 0.95464 =

RMSE = 27.5389
RMSE = 06.9029

The high correlation for Qp suggests that the model effectively captures the
underlying relationships for this variable, whereas Cp, while still accurate, has
a slightly lower correlation, indicating some complexity in prediction. Also,
the results indicate that the weight percentages of the following operational
conditions are, respectively, 2.94%, 17%, 42.94%, 28.23%, 6.72%, and 2.17%:
pressure, temperature, feed flow, feed concentration, turbidity, and PH accor-
ding to the data in Fig. 5. The findings indicate that the Ro intake feed flow
has the greatest influence on the RO system’s performance and the caliber of
Q) and C, when compared to other factors. Table 5 comparison between the
predicted and experimental data of Q), and C,,. Table 6 presents the highest
R test ratio for Q, and C),. Presenting data from the RO system proved that
a neural network with 11 hidden neurons for the transfer function (Tansig,
Purelin) was the best model.
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Figure 7. Shows exact Qp, C, vs predicted Op, Cp,.

6. Conclusions

This work runs the predictive model using the performance operating con-
ditions of the reverse osmosis system from the large Basrah water project.
Although feed pressure (bar), inlet temperature (C°), flow rate (m> /h), concen-
tration (ppm), feed turbidity (NTU), and pH are its input variables, the output
variables of the ANN model are permeate flow m? /h) and concentration. This
work made use of several feed-forward and feedback propagation layers in
neural networks. Seven training strategies were analyzed in order to identify
the most successful one. Projecting the performance of the reverse osmosis
model seems to be optimal using Bayesian regularization backpropagation.
While taking into account hidden layer count, hidden layer nodes, and transfer
functions. Whereas Bayesian regularization backpropagation (Trainbr) delivers
the lowest mean square error for the hidden layer, the transfer functions (Tansig,
Purelin) produce the best results for the output layer, both during testing and
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training. This implies that the choice of the transfer function determines, most
importantly, the maximum performance of the model. Future studies should
look at other transfer functions and their likely impact on boosting general
accuracy and dependability in reverse osmosis estimates. A neural network
with 11 hidden neurons using the transfer functions (Tansig, Purelin) was
found to be the best model for displaying data on the RO system’s performance.
Because in relation to other hidden neurons, the model produced a lower MSE
(0.051527) and a higher regression value for O, and C,, (0.98268 and 0.95464,
respectively). The ANN model also demonstrated the following weight percen-
tages for various operational circumstances: 2.94% pressure, 17% temperature,
42.94% feed flow, 28.23% feed concentration, 6.72% turbidity, and 2.17%
pH. Lower MSE and better regression values during ANN model training and
testing indicate exceptionally high-quality data. This remarkable capability
ensures that the model can adapt to new data efficiently and provide accurate®
estimates. Additionally, it highlights the importance of choosing the proper
preprocessing methods and features to enhance model performance.

cript

Authors’ contribution
All authors contributed equally to the preparation of this article.

Declaration of competing interest
The authors declare no conflicts of interest.

Funding source
This study didn’t receive any specific funds.

d Manus

Data availability

The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.

Acknowledgements

The authors gratefully acknowledge the administration of the Large Basra Wa-
ter Project and the Basra Water Directorate for their support and cooperation
in facilitating the completion of this research. Special thanks are also extended O
to OTV-VEOLIA Company for their valuable collaboration.

cepte

REFERENCES

L...

[1] E. M. Villena-Martinez, P. A. Alvizuri-Tintaya, J. Lora-Garcia, Q
J. 1. Torregrosa-Lépez, and V. G. Lo-lacono-Ferreira, “A compa-
rative analysis of statistical models and mathematics in reverse®
osmosis evaluation processes as a search path to achieve bet- H
ter efficiency,” Water, vol. 14, no. 16, 2022. [Online]. Available:
https://www.mdpi.com/2073-4441/14/16/2485 N

A. Najah, A. El-Shafie, O. A. Karim, and A. H. El-Shafie, “Application :
of artificial neural networks for water quality prediction,” Neural
Computing and Applications, vol. 22, no. 1, pp. 187-201, 2013. [Online]. g
Available: https://doi.org/10.1007/s00521-012-0940-3

[3] M. Kulisz, J. Kujawska, B. Przysucha, and wojciech Cel, “Forez

[2

—

casting water quality index in groundwater using artificial neural
network,” Energies, vol. 14, no. 18, p. 5875, 2021. [Online]. Availablel
https://doi.org/10.3390/en14185875

[4] A. Azad, S. Farzin, S. F. Mousavi, and A. Firoozbakht, “The use of‘U
optimized artificial neural network model by the genetic algorithm
in estimating water salinity parameters (case study: Gorganrood e
river),” in International Congress on Civil Engineering Architecture Q‘
and Urban Development., no. 1, p. 9, 2016. [Online]. Available:
https://civilica.com/doc/619834/ Q)

[5] M. Mijwel, “Genetic algorithm optimization by natural se- O

lection,” computer science, 2016. [Online]. Available: https: o

//doi.org/10.13140/RG.2.2.23758.18246

S. Nazif, E. Mirashrafi, B. Roghani, and G. N. Bidhendi, “Ar-

tificial intelligence—based optimization of reverse osmosis sys-

tems operation performance,” Journal of Environmental Enginee-

ring, vol. 146, no. 2, p. 04019106, 2020. [Online]. Available:

https://doi.org/10.1061/(ASCE)EE.1943-7870.0001613

K. Al-Shayji, “Modeling, simulation, and optimization of large-

scale commercial desalination plants,” Virginia Polytechnic Institute

and State University, vol. 46, pp. 8-12, 1998. [Online]. Available:

http://hdl.handle.net/10919/30462

[8] A. N. Ghanim, “Utilization of date pits derived bio-adsorbent for
heavy metals in wastewater treatment: Review,” Al-Qadisiyah Journal

[6

—_

[7

—



https://www.mdpi.com/2073-4441/14/16/2485
https://doi.org/10.1007/s00521-012-0940-3
https://doi.org/10.3390/en14185875
https://civilica.com/doc/619834/
https://doi.org/10.13140/RG.2.2.23758.18246
https://doi.org/10.13140/RG.2.2.23758.18246
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001613
http://hdl.handle.net/10919/30462

ZAMAN NAZZAL ET AL./ AL-QADISIYAH JOURNALFOR ENGINEERING SCIENCES 18 (2025) 001 — 007 007

for Engineering Sciences, vol. 16, no. 1, pp. 58-69, 2023. [Online].
Available: https://doi.org/10.30772/gjes.v16i1.910
[9] A. Remlaoui, D. Nehari, B. Kada, H. Panchal, K. Al-Farhany,

and M. Al-Dawody, “Dynamic simulation of solar-powered desali-
nation with integrated photovoltaic/thermal collectors and membra-
ne distillation,” Al-Qadisiyah Journal for Engineering Sciences,
vol. 17, no. 2024, p. 445-456, 2024. [Online]. Available:
https://doi.org/10.30772/qjes.2024.151057.1275

[10] A. Zilouchian and M. Jafar, “Automation and process control of
reverse osmosis plants using soft computing methodologies,” Desali-
nation, vol. 135, no. 1, pp. 51-59, 2001. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0011916401001382

[11] M. Barello, D. Manca, R. Patel, and I. Mujtab, “Neural network-based
correlation for estimating water permeability constant in ro desalination
process under fouling,” Desalination, vol. 345, no. 1, pp. 101-111, 2014.
[Online]. Available: https://doi.org/10.1016/j.desal.2014.04.016

[12] F. Mjalli, S. Al-Asheh, and H. E.Alfadala, “Use of artificial
neural network black-box modeling for the prediction of wastewater
treatment plants performance,” Journal of environmental mana-
gement, vol. 83, no. 3, pp. 329-338, 2007. [Online]. Available:
https://doi.org/10.1016/j.jenvman.2006.03.004

[13] Y. G. Lee, Y. S. Lee, J. J. Jeon, S. Lee, D. R. Yang, I. S. Kim,
and J. H. Kim, “Artificial neural network model for optimizing
operation of a seawater reverse osmosis desalination plant,” Desa-
lination, vol. 247, no. 1, pp. 180-189, 2009. [Online]. Available:
https://doi.org/10.1016/j.desal.2008.12.023

[14] M. Talhami, T. Wakjira, T. Alomar, S. Fouladi, F. Fezouni, U. Ebead,
A. Altace, M. AL-Ejji, P. Das, and A. H. Hawari, “Single and
ensemble explainable machine learning-based prediction of mem-
brane flux in the reverse osmosis process,” Journal of Water
Process Engineering, vol. 57, p. 104633, 2024. [Online]. Available:
https://doi.org/10.1016/j.jwpe.2023.104633

[15] Y. Zhao, J. Taylor, and S. Chellam, “Predicting ro/nf water quality
by modified solution diffusion model and artificial neural networks,”
Journal of membrane science, vol. 263, no. 1-2, pp. 38-46, 2005.
[Online]. Available: https://doi.org/10.1016/j.memsci.2005.04.004

[16] A. Aish, H. Zaqoot, and S. Abdeljawad, “Artificial neural network
approach for predicting reverse osmosis desalination plants performance
in the gaza strip,” Desalination, vol. 367, pp. 240-247, July 20215.
[Online]. Available: https://doi.org/10.1016/j.desal.2015.04.008

[17] F. Essa, M. E. A. Elaziz, S. Shanmugan, and A. H. Els-
heikh, “Artificial neural network and desalination systems,” in
Artificial Neural Networks for Renewable Energy Systems and
Real-World Applications , pp. 159-187, 2022. [Online]. Available:
https://doi.org/10.1016/B978-0-12-820793-2.00010-0

[18] M. Khayet, C. Cojocaru, and M. Essalhi, “Artificial neural network mode-
ling and response surface methodology of desalination by reverse osmo-
sis,” Journal of membrane science, vol. 368, no. 1-2, pp. 202-214, 2011.
[Online]. Available: https://doi.org/10.1016/j.memsci.2010.11.030

[19] Z. Murthy and M. Vora, “Prediction of reverse osmosis performance
using artificial neural network,” Indian Journal of Chemicaltechnology,
vol. 11, pp. 108-115, 2004.

[20] K. Mohd. Yusof, A. Idris, and J. S. Lim, “Pore size determination of
asymmetric membrane using neural network,” International Conference
on Chemical Bioprocess Engineering, Kota Kinabalu, 2003.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

S. Park, S.-S. Baek, J. Pyo, Y. Pachepsky, J. Park, and K. H. Cho,
“Deep neural networks for modeling fouling growth and flux decline
during nf/ro membrane filtration,” Journal of Membrane Science,

vol. 587, no. 2019, p. 117164, October 2019. [Online]. Available:
https://doi.org/10.1016/j.memsci.2019.06.004

W. H. Abuwatfa, N. AlSawaftah, N. Darwish, W. G. Pitt, and G. A.
Husseini, “A review on membrane fouling prediction using artificial
neural networks (anns),” Membranes, vol. 13, no. 7, p. 685, 2023.
[Online]. Available: https://doi.org/10.3390/membranes13070685

D. Jumaah, “Artificial neural network for predicting the performance

of reverse osmosis desalination plants,” SSRN, p. 146, 2012. [Online].,‘_)
Available: https://dx.doi.org/10.2139/ssrn.4182700 Q{
I. Abdulkareem, A. Abbas, and A. Dawood, “Modeling pollution.
index using artificial neural network and multiple linear regression
coupled with genetic algorithm,” Journal of Ecological Enginee-
ring, vol. 23, no. 3, pp. 236-250, 2022. [Online]. Available: O
https://doi.org/10.12911/22998993/146177

H. Banejad and E. Olyaie, “Application of an artificial neural network
model to river water quality index prediction—a case study,” Journal of
American science, vol. 7, no. 1, pp. 6065, 2011. [Online]. Available:
http://www.americanscience.org

C. Nwobi-Okoye and B. Ochieze, “Age hardening process modeling anfz
optimization of aluminum alloy a356/cow horn particulate composite

for brake drum application using rsm, ann and simulated annealing,
Defence Technology, vol. 14, no. 4, pp. 336-345, 2018. [Online
Available: https://doi.org/10.1016/j.dt.2018.04.001 ]‘U
M. Islam, G. Chen, and S. Jin, “An overview of neural networks,” Ameri-

can Journal of Neural Networks and Applications, vol. 5, no. 1, pp. 7-1 1,4_)
2019. [Online]. Available: https://doi.org/10.11648/j.ajnna.20190501.12 Q‘
A. LorenziLuiz, C. P. da Silva, and J. L. Campagnolo, “Using

a back-propagation algorithm to create a neural network for inter- Q)
preting ultrasonic readings of concrete,” Conference: 16th World O
Conference on Nondestructive Testing, 2004. [Online]. Available: o
http://doi.org/10.13140/RG.2.1.2396.0809

W. Jenkins, “Approximate analysis of structural grillages using a neura
network,” Proceedings of the Institution of Civil Engineers-Structures °
and Buildings, vol. 122, no. 3, pp. 355-363, 1997. [Online]. Available: °
https://doi.org/10.1680/istbu.1997.29814 N
A. Zilouchian, F. Hamono, and T. Jordanides, “Intelligent con-H
trol using artificial neural networks and fuzzy logic: Recent Q#
trends and industrial applications,” Methods and Applications® =
of Intelligent Control, pp. 69-102, 1997. [Online]. Available:
https://doi.org/10.1007/978-94-011-5498-7_3

M. {Ali Saud Al Tobi}, G. Bevan, P. Wallace, D. Harrison, and K. Ra- /)
machandran, “A review on applications of genetic algorithm for artificial
neural network,” International Journal of Advance Computational Engi-
neering and Networking, vol. 4, no. 9, pp. 50-54, Sep. 2016.

A. Jain, J. Mao, and K. Mohiuddin, “Artificial neural networks: a
tutorial,” Computer, vol. 29, no. 3, pp. 31-44, 1996. [Online]. Availableg
https://doi.org/10.1109/2.485891 E
S. Chopra, D. Yadav, and A. Chopra, “Artificial neural network
based indian stock market price prediction: before and after de-
monetization,” International Journal of Swarm Intelligence an
Evolutionary Computation, vol. 8, no. 1, 2019. [Online]. Available: q)
https://doi.org/0.4172/2090-4908.1000174

How to cite this article:

Zaman Imad Nazzal and Ala’a Abdulrazaq Jassim, (2025). *Performance prediction of reverse osmosis in large Basra water desalination project using artificial
neural networks’, Al-Qadisiyah Journal for Engineering Sciences, 18(n), pp. xxx- 007. https://doi.org/10.30772/qjes.2024.152275.1326

QJES

Since 2008

N
Q
O
Q
Q

<



https://doi.org/10.30772/qjes.v16i1.910
https://doi.org/10.30772/qjes.2024.151057.1275
https://www.sciencedirect.com/science/article/pii/S0011916401001382
https://www.sciencedirect.com/science/article/pii/S0011916401001382
https://doi.org/10.1016/j.desal.2014.04.016
https://doi.org/10.1016/j.jenvman.2006.03.004
https://doi.org/10.1016/j.desal.2008.12.023
https://doi.org/10.1016/j.jwpe.2023.104633
https://doi.org/10.1016/j.memsci.2005.04.004
https://doi.org/10.1016/j.desal.2015.04.008
https://doi.org/10.1016/B978-0-12-820793-2.00010-0
https://doi.org/10.1016/j.memsci.2010.11.030
https://doi.org/10.1016/j.memsci.2019.06.004
https://doi.org/10.3390/membranes13070685
https://dx.doi.org/10.2139/ssrn.4182700
https://doi.org/10.12911/22998993/146177
http://www.americanscience.org
https://doi.org/10.1016/j.dt.2018.04.001
https://doi.org/10.11648/j.ajnna.20190501.12
http://doi.org/10.13140/RG.2.1.2396.0809
https://doi.org/10.1680/istbu.1997.29814
https://doi.org/10.1007/978-94-011-5498-7_3
https://doi.org/10.1109/2.485891
https://doi.org/0.4172/2090-4908.1000174
https://doi.org/10.30772/qjes.2024.152275.1326

	Introduction
	Methodology
	Study area
	Data description

	Artificial neural networks (ANN)
	Back propagation algorithm (BP)
	Results and discussion
	Conclusions

