

Research Paper

Performance prediction of reverse osmosis in large Basra water desalination project using artificial neural networks

Zaman Imad Nazzal and Ala'a Abdulrazaq jassim

Department of Chemical Engineering, Collage of Engineering, University of Basra/ Al-Basrah, Iraq.

ARTICLE INFO

Article history:

Received 00 mmm yyyy

Received in revised form 00 mmmmm YYYY

Accepted 00 mmmm yyyy

keyword:

Artificial Neural Networks

Back propagation

Basra water

Correlation coefficient

Reverse osmosis

ABSTRACT

This study evaluates the operational performance of the Large Basrah Water Project (LBWP) from February 1, 2023, to December 31, 2024, using an artificial neural network to predict reverse osmosis processes and analyze factors influencing permeability and concentration polarization. This trains and tests the Artificial Neural Network (ANN) model using a dataset comprised of 700 items and divides it into three groups: 80% for training, 10% for validation, and 10% for testing. The developed neural network model successfully predicts the output variables Q_p and C_p based on these six input variables: Feed Pressure, Temperature, Q_f , C_f , Turb, and pH. Using Bayesian regularization backpropagation, the model demonstrated excellent predictive performance for Q_p , with high correlation ($R=0.98268$) and low error metrics ($RMSE=27.5389$). While the prediction for C_p was slightly less accurate ($R=0.95464$ and $RMSE=6.9029$), the overall model performance remains robust and reliable. This approach provides a valuable predictive tool for understanding and optimizing the underlying system behavior based on the selected input parameters. Furthermore, the ANN model indicates that the related weights for temperature, pressure, feed water flow rates, feed water salinity, turbidity, and pH are 17%, 2.94%, 42.94%, 28.23%, 6.72%, and 2.17%, respectively. These results imply that using the training datasets, the model fairly forecasts the concentration and flow of permeate.

© 2025 University of Al-Qadisiyah. All rights reserved.

1. Introduction

Artificial Neural Networks (ANN) are a form of computational models inspired by the human brain's networks of neurons [1]. A broad spectrum of scientific disciplines have recently benefited from the neural network approach. Environmental scientists and water engineers have been using ANNs since the dawn of the 1990s. The Artificial Neural Network (ANN) is a beneficial approach, having a flexible mathematical structure capable of detecting complicated nonlinear correlations among both the input and output data when compared with standard modeling methods [2]. They are used rather well to forecast the water quality of certain aquatic bodies. When John Holland initially proposed the fundamental idea of genetic algorithms in 1975, while presenting the Adaptive Systems Theory at Michigan University, a theory of adaptive systems. Inspired by concepts of natural selection and evolution, his creative work prepared the stage for a novel approach to optimization and problem-solving. Since then, this initial concept has evolved into a powerful tool in numerous fields like artificial intelligence, engineering, and economics [3, 4]. The genetic algorithm is a searching method depending on Darwin's theory of evolution. This method replicates natural selection, in which the best-adapted individuals are selected for reproduction to generate the following generation's progeny. Genetic algorithms effectively search a large solution space to identify optimal or near-optimal outcomes for difficult problems by iteratively selecting, merging, and altering solutions [5]. ANNs in engineering are used as flexible function approximators that learn a complex nonlinear relationship from the data. Current uses of ANNs with RO systems include modeling the performance based on input parameters (flux, salt rejection, and fouling rates) to predict the performance, as well as to optimize the performance of RO processes, whether no analytical model exists or one is too cumbersome

[1, 6]. This section summarizes the application of ANNs for RO modelling or optimization. Al-Shayji [7] identified significant operational parameters that contribute to optimal performance and projected the large-scale effectiveness of spraying using the ANN model combined with statistical methods. Remilaoui et al.[8] This study presents a computational model for solar-powered desalination using photovoltaic/thermal collectors and membrane distillation. Rashida et al.[9] The study investigates the impact of operating conditions on the removal of heavy and radioactive elements from an aqueous solution containing Phosphogypsum using a Reverse Osmosis Membrane. Jafar, [10], proposed Ann's integration with an uncertain argument for creating an intelligent control system aimed at maximizing the performance of calm, continuous plants. This mix allows real-time changes to raise operational effectiveness.. Similarly, Ballelo et al. [11] found that one can forecast membrane fouling and recovery after cleaning by using applied ANN models, an essential component for preserving system performance. Mjalli et al. [12] This study uses artificial neural network (ANN) black-box modeling to predict wastewater treatment plant performance. The model accurately captures plant operation characteristics, minimizing costs and assessing environmental balance. Lee et al. [13, 14] studied an artificial neural network (ANN) model developed with flow rate for reverse osmosis (SWRO) and imitated developed water temperature and transmembrane pressure (TMP). To paint the mass flow in the diaphragm of the RO system, Zhao et al. [15] integrated ANN with a modified solution diffusion model; the predictions exceeded the pre-model. Additionally, Aish et al. [16, 17] ANN were used to predict the performance of the RO system when saltwater treatment, active adjustment, and future maintenance are allowed, by predicting the performance of the system under different feed conditions. In addition, a more accurate procedure is produced at the RO system with simulation ANNs.

*Corresponding Author.

E-mail address: alaa.jassim@uobasrah.edu.iq; Tel: (+964) 780 139-2171 (Ala'a Jassim)

Accepted Manuscript...Accepted Manuscript

Nomenclature

ANN	Artificial Neural Network	<i>LBWP</i>	Large Basrah Water Project
<i>BP</i>	Back Propagation	T	Temperature of feed
C_p	Permeate concentration	Turb.	Turbidity
C_f	Feed concentration	Trainbr	Bayesian regularization backpropagation.
RMSE	Root mean squared error	Traingda	Gradient descent algorithm
P	Pressure of feed	Trainoss	Algorithm for one-step backpropagation.
Purelin	Linear Function	Trainlm	Levenberg - Marquardt Algorithm
MSE	Mean square error	Trainrp	Resilient algorithm
Q_p	Permeate flow	Traingdx	Gradient Descent with Momentum and Adaptability.
Q_f	Feed flowrate	Trainscg	Backpropagation technique with a scaled conjugate gradient.
<i>PH</i>	Acidity/alkalinity of feed water	Turb	Feed turbidity
R	Regression	Tang-sig	Tangent hyperbolic function.
W	Weight	RO	Reverse osmosis, which is a water purification process.

To simulate calm uninterruptedness, Khayet et al. [18], for example, compared the efficacy of ANN with response surface methodology (RSM). Murthy and Vora [19] repeated the efficacy of ANNs in modeling dynamic RO systems. Moreover, K. Mohd et al. [20] projected membrane pore size with ANNs vital information for membrane filtration. Using geographical fouling data, Park et al. [21] developed a deep neural network (DNN) to model membrane fouling during nanofiltration and reverse osmosis filtration using in-situ fouling image data from optical coherence tomography (OCT). Abuwatfa et al. [22] using ANN models in RO systems marks significant progress in desalination that has at last extended the use of ANN by developing a deep neural network (DNN) to explain how organic fouling arises in RO membranes. D. Jumaah et al. [23] utilized the application of artificial neural networks (ANN) in building and forecasting the performance of home RO systems is investigated. Whereas the second case forecasts the weight percentage of ANN models depending on operating parameters such as feed pressure, feed temperature, and feed concentration. Abdulkareem et al. [24] studied the modeling of water pollution in Basra using an artificial neural network, a genetic algorithm, and an annealing simulation method. As the area evolves, the combination of ANNs with other machine learning techniques and optimization strategies will most likely produce even more sustainable and efficient desalination technologies, thus addressing problems of world water scarcity. In the present work, a neural network model was developed to predict two output variables based on six input variables. The network aims to establish a reliable predictive model that can accurately map the relationship between these inputs and outputs using a supervised learning approach.

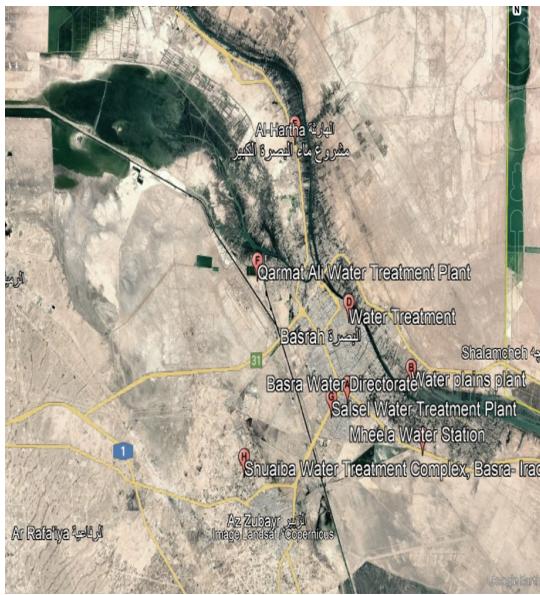


Figure 1. Shows the geographical location of the large Basra water desalination project.

2. Methodology

2.1 Study area

This study was conducted at the large Basra Water Project, located in the Al-Haritha district of the Basra Governorate in southern Iraq. The facility is

positioned at coordinates 30°46'50.00"N and 47°57'06.1"E, **Fig. 1**, north of Basra city and west of the Shatt Al-Arab River. A group of firms, including JICA, OTV, VEOLIA, Hitachi, and Arab contractors, worked together to build the project on 80 dunums of land in the district. It serves more than two million people. The building of this factory started in 2014, and it opened for business in 2022. This plant can make 200,000 m^3 of product every day (8333.33 m^3/hr). The goal of the project is to improve the quality and quantity of water for the communities around it, which have been dealing with problems with dirty and scarce water for a long time. To make sure that water supplies in the area are managed in a way that lasts, it uses advanced filtration systems and regular monitoring. The operations team's job is to make sure that the UF and RO membranes work well by getting excellent pretreatment performance.

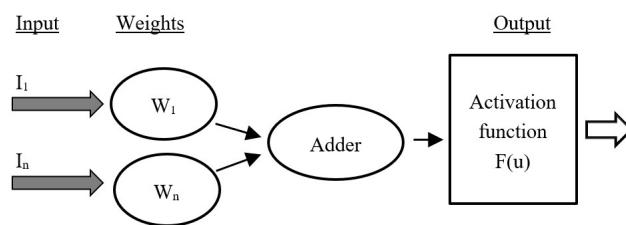


Figure 2. Essential elements of the Artificial Neural Network(ANN) [16, 17].

Table 1. ANN model input and output variables.

Item	Parameter	Symbol	Unit
Input variables	Pressure	P	Bar
	Temperature	T	C°
	Concentration	C_f	ppm
	Flow rate	Q_f	m^3/h
	Turbidity	Turb.	NTU
Output variables	<i>PH</i>	<i>PH</i>	—
	Permeate flow	Q_p	m^3/h
	Permeate concentration	C_p	ppm

2.2 Data description

This study used a neural network model to guess how much permeate will flow (m^3/h) and how concentrated it will be (ppm). The model looked at six factors: feed pressure (bar), input temperature (C°), flow rate (m^3/h), concentration (ppm), feed turbidity (NTU), and pH. This research team collected the data from the major Basra water project, looked at it, and divided it into three groups: 80% for training, 10% for validation, and 10% for testing. The network employs supervised learning to build a reliable model that elucidates the connections between these inputs and outputs. This uses the nntool and nftool methods in the MathWorks MATLAB 2024 program to build the best artificial neural network model. The RO system's performance has led to the gathering of 700 days, from Feb. 2023 to Dec. 2024 data sets that show how things really work. **Table 1** and **Fig. 3** show this information. Drawn from the Large Basra Water Project, **Table 2** provides a synopsis of 700 sets of data regarding the operation of the reverse osmosis (RO) system in real-world conditions. Using the conditions of the large Basra water project as what the model took in, the ANN model examined how well the reverse osmosis system operated by looking at the permeate flow (m^3/h) and concentration (ppm). **Figure 4** illustrates the phases of a MATLAB 24 computer program that

implements training, validation, and testing procedures for the effectiveness of training methods for reverse osmosis systems.

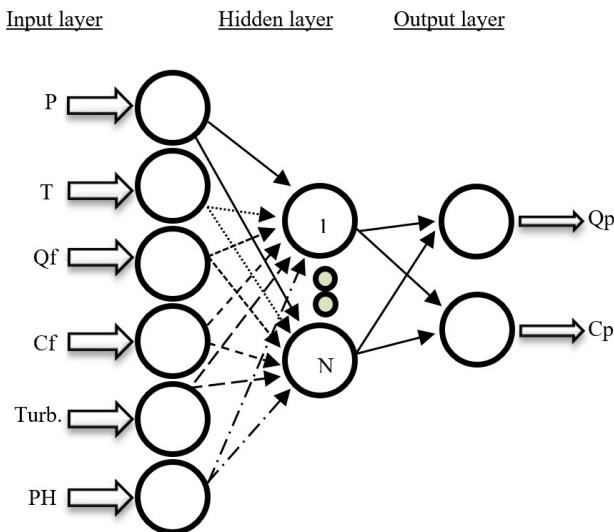


Figure 3. Shows the proposed network of the performance of reverse osmosis system training methods.

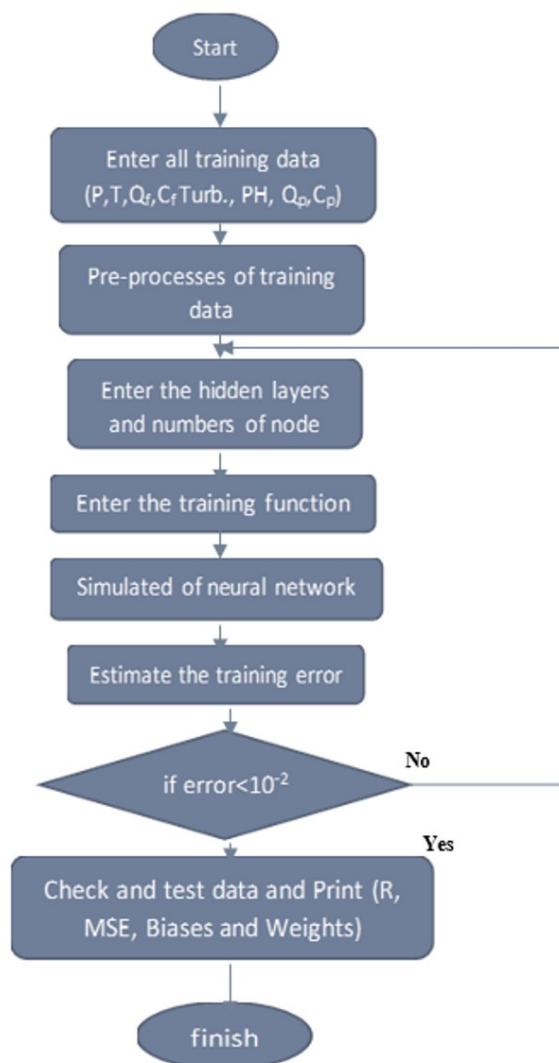


Figure 4. The flow chart shows the steps and the overview view the ANN model.

3. Artificial neural networks (ANN)

Artificial neural networks (ANNs) are mathematical computer models used in human brain activity identification. Artificial neural network (ANN) technology can solve problems even in the lack of data, absorb and learn from continuous data input, and preserve knowledge using up-to-date information. It can also perform brain activities. Because of their adaptability and development capability, ANNs are especially strong in a wide spectrum of uses, including image identification, natural language processing, and predictive analytics. By mimicking the neuronal connections in the brain, these models can quickly identify patterns and make informed judgments depending on the input they obtain. The capacity of a neural network to duplicate complex non-linear relations without depending on any prior knowledge about the character of the relation is its fundamental benefit [25]. An ANN is made of many neurons expressed in many nodes. Whereas the input nodes reflect the independent variables, the output nodes [26] show the dependent factors. The learning process is largely aimed at identifying the ideal collection of weights that can generate the best output for the particular inputs. Calculating the error [2], helps us to match the network output to the intended reaction. Structures in neural networks abound. Feedforward and recurrent networks practically could be confused. From the input nodes through hidden nodes to the output nodes in feedforward networks, only forward-directed information flows. Recurrent networks offer connections whereby data can go backwards and forwards across network node connections. Another name for the recurrent networks is feedback networks [27]. When historical knowledge about the process or system model is absent, artificial neural networks (ANN) can map non-linear connections. Their capacity for "learning and modification by example, as well as their fast detection of structural elements, characterize their advantages over more conventional mathematical models. ANN modeling cannot substitute a complete knowledge of process behaviour, even if it helps to rapidly build models for complicated reactions. The choice of process elements, the acquired data, and the training area used primarily impact the efficacy of establishing a strong and reliable network. Comprehensive evaluation of these elements is essential for good model training to guarantee that the network can reach a suitable degree of fit to new data. Furthermore, adjustments and continuous validation may be necessary to maintain the projections' quality and accuracy as new data becomes available. Recently, there has been a lot of interest in artificial neural networks (ANN). In the real world, it is used in a variety of fields, including oil drilling, engineering, industrial processes, mathematical models, and equations. Artificial neural networks help computers operate as they should. Usually, very non-linear model generations and estimations demand complex, large-scale environments. Thus, one can project the performance of the reverse osmosis system using an ANN. Three layers define artificial neural networks of the reverse osmosis process: an input layer, an output layer, and a hidden layer. Neurons at the input layer must first obtain outside data before sending it to the network's processors for study [28]. A neuron at the bottom gathers and processes the data sent from the input layer to the hidden layer before reacting [29]. **Figure 2** depicts the essential elements of a neural network, including inputs and outputs, weighting variables, bias, and activation function [30].

4. Back propagation algorithm (BP)

Backpropagation (BP) is the most often used among the several learning techniques available for every neural network model. We apply this approach in supervised learning [25]. BP's main training concept modifies weights to lower mean square error (MSE) based on the gradient descent approach [31]. The BP algorithm is defined in two phases: forward and reverse phases. The algorithm distributes the network input data forward to the next level, and so on. The network fault is calculated following the forward phase. The network fault is spread backwards in the backward phase; hence, the weights undergo change [32]. **Figure 2** shows three layers, each with n neurons, which make up the network architecture. The number of input variables determines the first layer, that of neurons. Receiving outside world input, this layer forwards it unaltered to the hidden layer. Usually referred to as hidden layers, intermediate layers have only weak ties to the outside world. The output layer's activation function carries summed individual values from the previous layer. The input layer receives the output and updates it with additional weight and bias, if necessary, within a specified error tolerance. Interestingly, nodes on the same layer do not have any connections to each other. This cycle will continue until all the limitations have been met. Once the limitations have been met, the model undergoes a final evaluation to ensure its accuracy and effectiveness in making predictions. Any necessary adjustments can be made during this phase, refining the weights and biases to enhance performance before deployment [33].

Table 2. Shows the actual data of the RO system used in the ANN model.

Date	Pressure (Bar)	Temperature (C°)	Q_f (m^3/h)	C_f (ppm)	Turb (NTU)	PH	Q_p (m^3/h)	C_p (ppm)
1-Feb-23	20.74	15.20	4208.48	2681	0.223	7.84	3308.82	37
2-Feb-23	15.33	15.20	5319.20	2220	0.089	7.94	4192.07	32
3-Feb-23	20.58	15.60	4255.36	1682	0.211	8.03	3348.21	21
4-Feb-23	20.92	15.55	3068.57	1720	0.201	7.93	3197.88	22
5-Feb-23	21.26	15.50	4326.65	1732	0.213	7.91	3408.50	20
6-Feb-23	21.64	15.80	4379.90	1789	0.235	8.09	3450.83	22
7-Feb-23	15.97	15.60	4390.39	1790	0.091	7.98	3452.67	24
8-Feb-23	21.25	15.80	4397.27	1934	0.108	8.05	3458.22	23
9-Feb-23	15.69	14.60	5425.77	1900	0.164	8.07	4280.04	23
10-Feb-23	21.32	15.20	5297.28	1789	0.166	8.05	4182.83	24
11-Feb-23	21.19	15.50	5368.92	1958	0.112	8.17	4240.05	36
12-Feb-23	21.21	15.40	5273.77	2028	0.143	8.11	4161.12	23

Table 3. Shows MSE, R, and Epoch for the one hidden layer of different ANN training algorithms.

No. of Neuron	Item	Trainlm	Trainbr	Trainrp	Traingdx	Traingda	Trainoss	Trainscg
15	R	0.96184	0.97265	0.94828	0.9202	0.84276	0.93668	0.92265
	MSE	0.14779	0.046283	0.14404	0.20906	0.34904	0.16482	0.19346
	Epoch	6	233	54	115	56	53	33
17	R	0.97055	0.97825	0.94104	0.90863	0.86366	0.92864	0.93471
	MSE	0.10702	0.039414	0.2072	0.18739	0.27171	0.14684	0.132
	Epoch	15	167	79	101	152	57	49
19	R	0.95865	0.97824	0.95319	0.90351	0.81926	0.93558	0.91954
	MSE	0.060104	0.03882	0.081722	0.18164	0.35304	0.11517	0.14735
	Epoch	4	146	118	89	97	59	49
21	R	0.97133	0.97527	0.94713	0.89767	0.84096	0.93959	0.94073
	MSE	0.069902	0.033935	0.1043	0.1963	0.30549	0.1008	0.10054
	Epoch	17	664	124	94	139	80	57
23	R	0.9699	0.97855	0.94413	0.88372	0.83023	0.92548	0.93921
	MSE	0.072116	0.033577	0.11525	0.27594	0.35964	0.16575	0.12774
	Epoch	8	524	126	85	196	58	78
25	R	0.97167	0.98268	0.94458	0.89678	0.82992	0.93753	0.94212
	MSE	0.085148	0.030188	0.1271	0.20939	0.28815	0.12331	0.10969
	Epoch	7	363	110	106	160	71	64
27	R	0.97262	0.97739	0.95099	0.42424	0.79523	0.93096	0.92305
	MSE	0.043659	0.028932	0.090101	2.1684	0.36407	0.1282	0.10966
	Epoch	24	327	137	16	168	58	36
29	R	0.96584	0.9799	0.94966	0.88578	0.79207	0.91342	0.94035
	MSE	0.087291	0.022342	0.10591	0.23676	0.48803	0.17154	0.11473
	Epoch	4	232	94	90	136	47	55

**Figure 5.** Shows the weight percentages of operating conditions.

5. Results and discussion

This part models the performance of the reverse osmosis system by means of neural networks with a single hidden layer. Seven training algorithms, Traingdx, Trianscg, Trainoss, Trainrp, Traingda, Trainbr, and Trainlm, have been investigated and tested to ascertain the optimal strategy for the performance of the reverse osmosis system network. That also probes different node counts for every method. We probe the performance of the artificial neural network(ANN) by increasing the number of hidden nodes, as indicated in **Table 3**. Bayesian regularization backpropagation with 25 nodes in the hidden layer outperforms other networks with varying node counts. The results of the Bayesian model show this is so because it attained a lower MSE of 0.030188 and a higher regression value of 0.98268 than in other models. Furthermore investigated are different numbers of nodes for different algorithms to determine the best approach for reverse osmosis system performance. The hidden and output layers are respectively set active by the hyperbolic tangent (tansig) and linear (purelin) functions. Following our investigation on the ideal activation functions (tansig, purelin) for showing data on the performance of the RO system, we then raised the number of neurons from 1 to 25 in increments of 2. This work intends to improve the correlation between the actual and expected values for Q_p and C_p as well as increase the accuracy of the artificial neural network model evaluating the RO system. This is thus in contrast to other regularization backpropagation outperforms networks with varying numbers of nodes in the hidden layer. When looking at the different methods used in ANN mode, the Bayesian regularization backpropagation (trainbr) method shows the smallest

Table 4. Training of ANN models with various neurons and transfer functions.

No. of Neuron	Item	(Tansig, Tansig)	Equation	(Tansig, Logsig)	Equation	(Tansig, Purelin)	Equation
15	R	0.9764		0.79291		0.97265	
	MSE	0.044646	$0.95 \times T + 0.00067$	0.54068	$0.51 \times T + 0.38$	0.046283	$0.95 \times T - 2.5e^{-5}$
	Epoch	254		293		233	
17	R	0.9767		0.79227		0.97825	
	MSE	0.041223	$0.9 \times T - 0.0053$	0.55664	$0.51 \times T + 0.38$	0.039414	$0.96 \times T - 0.00071$
	Epoch	227		293		167	
19	R	0.97923		0.79319		0.97824	
	MSE	0.035495	$0.96 \times T - 0.0025$	0.54617	$0.51 \times T + 0.38$	0.03882	$0.96 \times T - 0.0019$
	Epoch	179		767		146	
21	R	0.97639		0.79273		0.97527	
	MSE	0.035209	$0.95 \times T - 0.0029$	0.51221	$0.51 \times T + 0.38$	0.033935	$0.96 \times T - 0.002$
	Epoch	275		255		664	
23	R	0.98193		0.79295		0.97855	
	MSE	0.030255	$0.96 \times T + 0.00052$	0.54221	$0.51 \times T + 0.38$	0.033577	$0.96 \times T + 0.0035$
	Epoch	341		943		524	
25	R	0.98135		0.79271		0.98268	
	MSE	0.031727	$0.96 \times T - 0.0062$	0.55283	$0.51 \times T + 0.38$	0.030188	$0.97 \times T - 0.0045$
	Epoch	354		450		363	

mean square error (MSE) and the best correlation between the actual and predicted values of Q_p and C_p in the training data set. Moreover, we could show the favorable results of the (trainlm) method.

in an artificial neural network is utilized, networks with a (Tansig, Purelin) structure can offer the best performance and regression as the shaded cell in **Table 4** demonstrates.

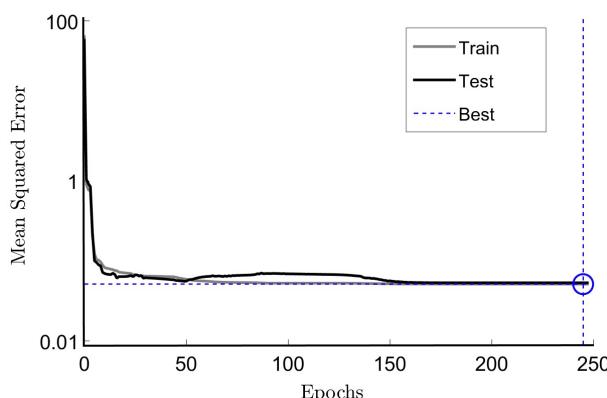


Figure 6. Displays the MSE for training and testing by a neural network with 11 hidden neurons for the (Tansig, Purelin) transfer function.

Furthermore, the many kinds of activation functions influence the performance of the neural network model in reverse osmosis since some of them do not reach the optimal MSE and regression. As such, we look into several output and hidden layer activation methods. **Table 4** shows the MSE, R and Epoch values via different transfer functions. Among the activation function settings are (Tansig, Tansig); (Tansig, Logsig); (Tansig, Purelin). When one hidden layer

Table 5. Shows comparison between the predicted and experimental data of Q_p and C_p .

Experimental Q_p	Predicted data Q_p	Experimental C_p	Predicted data C_p
	3277.02		40.890
2910.94	2961.60	68	62.770
3398.35	3368.96	73	69.669
2351.69	2327.45	65	68.810

With 25 hidden neurons and a transfer function of "Tansig, Purelin," the findings show how a neural network may present better information display from the large Basrah water treatment plant. Perfect for simulating complex systems like water movement and quite successful at spotting minor, non-linear connections in enormous amounts of data are neural networks. These models' structure allows them to learn from a lot of data and create more accurate forecasts and insights than more outmoded modeling methods. Hidden neurons since the model generated a lower MSE (0.051527) show that in **Fig. 6** and a higher regression value for Q_p and C_p (0.98268, 0.95464). The optimal equation for regressing real and expected data shows in **Fig. 7** for Q_p and C_p are [Eq. 1](#) and [Eq. 2](#), respectively.

$$(Q_p)ANN = 1 \times (Q_p)Actual + 14 \quad (1)$$

$$(C_p)ANN = 0.94 \times (C_p)Actual + 1.7 \quad (2)$$

Table 6. Demonstrates how to train ANN models with No. of neuron to activation function (Tansig, Purelin).

No. of Neuron	Target	MSE	Epoch	Testing R	Equation
9	Q_p	0.059649	138	0.99891	$Output = 1.00 \times Target + 00.58$
	C_p			0.92693	$Output = 0.95 \times Target + 03.20$
11	Q_p	0.051527	245	0.99892	$Output = 1.00 \times Target + 14.00$
	C_p			0.95464	$Output = 0.94 \times Target + 01.70$
13	Q_p	0.048733	325	0.99848	$Output = 0.99 \times Target + 14.00$
	C_p			0.87006	$Output = 0.85 \times Target + 07.60$
15	Q_p	0.046283	233	0.99862	$Output = 0.99 \times Target + 21.00$
	C_p			0.85220	$Output = 0.79 \times Target + 14.00$
17	Q_p	0.039414	167	0.99818	$Output = 1.00 \times Target - 13.00$
	C_p			0.89180	$Output = 0.91 \times Target + 05.20$
19	Q_p	0.03882	146	0.98275	$Output = 1.00 \times Target + 21.00$
	C_p			0.89929	$Output = 0.94 \times Target + 02.30$

We trained the neural network on a dataset of 700 samples, dividing the data into training (80%), validation (10%), and testing (10%) sets. The results from the testing data show a strong correlation and a low root mean squared error (RMSE), which means the model is performing well. Specifically, the testing performance was:

$$Q_p \text{ Output : } R = 0.99892 \Rightarrow \text{RMSE} = 27.5389$$

$$C_p \text{ Output : } R = 0.95464 \Rightarrow \text{RMSE} = 06.9029$$

The high correlation for Q_p suggests that the model effectively captures the underlying relationships for this variable, whereas C_p , while still accurate, has a slightly lower correlation, indicating some complexity in prediction. Also, the results indicate that the weight percentages of the following operational conditions are, respectively, 2.94%, 17%, 42.94%, 28.23%, 6.72%, and 2.17%: pressure, temperature, feed flow, feed concentration, turbidity, and pH according to the data in Fig. 5. The findings indicate that the Ro intake feed flow has the greatest influence on the RO system's performance and the caliber of Q_p and C_p when compared to other factors. Table 5 comparison between the predicted and experimental data of Q_p and C_p . Table 6 presents the highest R test ratio for Q_p and C_p . Presenting data from the RO system proved that a neural network with 11 hidden neurons for the transfer function (Tansig, Purelin) was the best model.

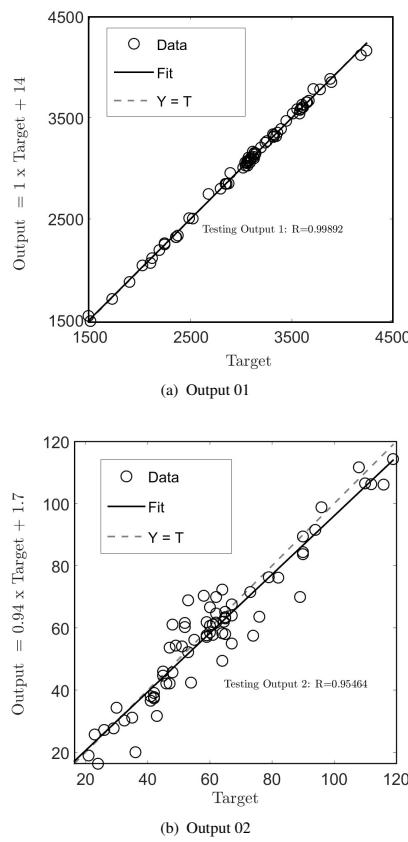


Figure 7. Shows exact Q_p, C_p vs predicted Q_p, C_p .

6. Conclusions

This work runs the predictive model using the performance operating conditions of the reverse osmosis system from the large Basra water project. Although feed pressure (bar), inlet temperature ($^{\circ}\text{C}$), flow rate (m^3/h), concentration (ppm), feed turbidity (NTU), and pH are its input variables, the output variables of the ANN model are permeate flow (m^3/h) and concentration. This work made use of several feed-forward and feedback propagation layers in neural networks. Seven training strategies were analyzed in order to identify the most successful one. Projecting the performance of the reverse osmosis model seems to be optimal using Bayesian regularization backpropagation. While taking into account hidden layer count, hidden layer nodes, and transfer functions. Whereas Bayesian regularization backpropagation (Trainbr) delivers the lowest mean square error for the hidden layer, the transfer functions (Tansig, Purelin) produce the best results for the output layer, both during testing and

training. This implies that the choice of the transfer function determines, most importantly, the maximum performance of the model. Future studies should look at other transfer functions and their likely impact on boosting general accuracy and dependability in reverse osmosis estimates. A neural network with 11 hidden neurons using the transfer functions (Tansig, Purelin) was found to be the best model for displaying data on the RO system's performance. Because in relation to other hidden neurons, the model produced a lower MSE (0.051527) and a higher regression value for Q_p and C_p (0.98268 and 0.95464, respectively). The ANN model also demonstrated the following weight percentages for various operational circumstances: 2.94% pressure, 17% temperature, 42.94% feed flow, 28.23% feed concentration, 6.72% turbidity, and 2.17% pH. Lower MSE and better regression values during ANN model training and testing indicate exceptionally high-quality data. This remarkable capability ensures that the model can adapt to new data efficiently and provide accurate estimates. Additionally, it highlights the importance of choosing the proper preprocessing methods and features to enhance model performance.

Authors' contribution

All authors contributed equally to the preparation of this article.

Declaration of competing interest

The authors declare no conflicts of interest.

Funding source

This study didn't receive any specific funds.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgements

The authors gratefully acknowledge the administration of the Large Basra Water Project and the Basra Water Directorate for their support and cooperation in facilitating the completion of this research. Special thanks are also extended to OTV-VEOLIA Company for their valuable collaboration.

REFERENCES

- [1] E. M. Villena-Martínez, P. A. Alvizuri-Tintaya, J. Lora-García, J. I. Torregrosa-López, and V. G. Lo-Iacono-Ferreira, "A comparative analysis of statistical models and mathematics in reverse osmosis evaluation processes as a search path to achieve better efficiency," *Water*, vol. 14, no. 16, 2022. [Online]. Available: <https://www.mdpi.com/2073-4441/14/16/2485>
- [2] A. Najah, A. El-Shafie, O. A. Karim, and A. H. El-Shafie, "Application of artificial neural networks for water quality prediction," *Neural Computing and Applications*, vol. 22, no. 1, pp. 187–201, 2013. [Online]. Available: <https://doi.org/10.1007/s00521-012-0940-3>
- [3] M. Kulisz, J. Kujawska, B. Przysucha, and Wojciech Cel, "Forecasting water quality index in groundwater using artificial neural network," *Energies*, vol. 14, no. 18, p. 5875, 2021. [Online]. Available: <https://doi.org/10.3390/en14185875>
- [4] A. Azad, S. Farzin, S. F. Mousavi, and A. Firoozbakht, "The use of optimized artificial neural network model by the genetic algorithm in estimating water salinity parameters (case study: Gorganrood river)," in *International Congress on Civil Engineering Architecture and Urban Development*, no. 1, p. 9, 2016. [Online]. Available: <https://civilica.com/doc/619834/>
- [5] M. Mijwel, "Genetic algorithm optimization by natural selection," *computer science*, 2016. [Online]. Available: <https://doi.org/10.13140/RG.2.2.23758.18246>
- [6] S. Nazif, E. Mirashrafi, B. Roghani, and G. N. Bidhendi, "Artificial intelligence-based optimization of reverse osmosis systems operation performance," *Journal of Environmental Engineering*, vol. 146, no. 2, p. 04019106, 2020. [Online]. Available: [https://doi.org/10.1061/\(ASCE\)EE.1943-7870.0001613](https://doi.org/10.1061/(ASCE)EE.1943-7870.0001613)
- [7] K. Al-Shayji, "Modeling, simulation, and optimization of large-scale commercial desalination plants," *Virginia Polytechnic Institute and State University*, vol. 46, pp. 8–12, 1998. [Online]. Available: <http://hdl.handle.net/10919/30462>
- [8] A. N. Ghanim, "Utilization of date pits derived bio-adsorbent for heavy metals in wastewater treatment: Review," *Al-Qadisiyah Journal*

for Engineering Sciences, vol. 16, no. 1, pp. 58–69, 2023. [Online]. Available: <https://doi.org/10.30772/qjes.v16i1.910>

[9] A. Remlaoui, D. Nehari, B. Kada, H. Panchal, K. Al-Farhany, and M. Al-Dawody, "Dynamic simulation of solar-powered desalination with integrated photovoltaic/thermal collectors and membrane distillation," *Al-Qadisiyah Journal for Engineering Sciences*, vol. 17, no. 2024, p. 445–456, 2024. [Online]. Available: <https://doi.org/10.30772/qjes.2024.151057.1275>

[10] A. Zilouchian and M. Jafar, "Automation and process control of reverse osmosis plants using soft computing methodologies," *Desalination*, vol. 135, no. 1, pp. 51–59, 2001. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S0011916401001382>

[11] M. Barello, D. Manca, R. Patel, and I. Mujtab, "Neural network-based correlation for estimating water permeability constant in ro desalination process under fouling," *Desalination*, vol. 345, no. 1, pp. 101–111, 2014. [Online]. Available: <https://doi.org/10.1016/j.desal.2014.04.016>

[12] F. Mjalli, S. Al-Asheh, and H. E.Alfadala, "Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance," *Journal of environmental management*, vol. 83, no. 3, pp. 329–338, 2007. [Online]. Available: <https://doi.org/10.1016/j.jenvman.2006.03.004>

[13] Y. G. Lee, Y. S. Lee, J. J. Jeon, S. Lee, D. R. Yang, I. S. Kim, and J. H. Kim, "Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant," *Desalination*, vol. 247, no. 1, pp. 180–189, 2009. [Online]. Available: <https://doi.org/10.1016/j.desal.2008.12.023>

[14] M. Talhami, T. Wakjira, T. Alomar, S. Fouladi, F. Fezouni, U. Ebead, A. Altaee, M. AL-Ejji, P. Das, and A. H. Hawari, "Single and ensemble explainable machine learning-based prediction of membrane flux in the reverse osmosis process," *Journal of Water Process Engineering*, vol. 57, p. 104633, 2024. [Online]. Available: <https://doi.org/10.1016/j.jwpe.2023.104633>

[15] Y. Zhao, J. Taylor, and S. Chellam, "Predicting ro/nf water quality by modified solution diffusion model and artificial neural networks," *Journal of membrane science*, vol. 263, no. 1-2, pp. 38–46, 2005. [Online]. Available: <https://doi.org/10.1016/j.memsci.2005.04.004>

[16] A. Aish, H. Zaqoot, and S. Abdeljawad, "Artificial neural network approach for predicting reverse osmosis desalination plants performance in the gaza strip," *Desalination*, vol. 367, pp. 240–247, July 2021. [Online]. Available: <https://doi.org/10.1016/j.desal.2015.04.008>

[17] F. Essa, M. E. A. Elaziz, S. Shanmugan, and A. H. Elsheikh, "Artificial neural network and desalination systems," in *Artificial Neural Networks for Renewable Energy Systems and Real-World Applications*, pp. 159–187, 2022. [Online]. Available: <https://doi.org/10.1016/B978-0-12-820793-2.00010-0>

[18] M. Khayet, C. Cojocaru, and M. Essalhi, "Artificial neural network modeling and response surface methodology of desalination by reverse osmosis," *Journal of membrane science*, vol. 368, no. 1-2, pp. 202–214, 2011. [Online]. Available: <https://doi.org/10.1016/j.memsci.2010.11.030>

[19] Z. Murthy and M. Vora, "Prediction of reverse osmosis performance using artificial neural network," *Indian Journal of Chemicalotechnology*, vol. 11, pp. 108–115, 2004.

[20] K. Mohd. Yusof, A. Idris, and J. S. Lim, "Pore size determination of asymmetric membrane using neural network," *International Conference on Chemical Bioprocess Engineering*, Kota Kinabalu, 2003.

[21] S. Park, S.-S. Baek, J. Pyo, Y. Pachepsky, J. Park, and K. H. Cho, "Deep neural networks for modeling fouling growth and flux decline during nf/ro membrane filtration," *Journal of Membrane Science*, vol. 587, no. 2019, p. 117164, October 2019. [Online]. Available: <https://doi.org/10.1016/j.memsci.2019.06.004>

[22] W. H. Abuwafaa, N. AlSawaftah, N. Darwish, W. G. Pitt, and G. A. Husseini, "A review on membrane fouling prediction using artificial neural networks (anns)," *Membranes*, vol. 13, no. 7, p. 685, 2023. [Online]. Available: <https://doi.org/10.3390/membranes13070685>

[23] D. Jumaah, "Artificial neural network for predicting the performance of reverse osmosis desalination plants," *SSRN*, p. 146, 2012. [Online]. Available: <https://dx.doi.org/10.2139/ssrn.4182700>

[24] I. Abdulkareem, A. Abbas, and A. Dawood, "Modeling pollution index using artificial neural network and multiple linear regression coupled with genetic algorithm," *Journal of Ecological Engineering*, vol. 23, no. 3, pp. 236–250, 2022. [Online]. Available: <https://doi.org/10.12911/22998993/146177>

[25] H. Banejad and E. Olyaei, "Application of an artificial neural network model to river water quality index prediction—a case study," *Journal of American science*, vol. 7, no. 1, pp. 60–65, 2011. [Online]. Available: <http://www.americanscience.org>

[26] C. Nwobi-Okoye and B. Ochieze, "Age hardening process modeling and optimization of aluminum alloy a356/cow horn particulate composite for brake drum application using rsm, ann and simulated annealing," *Defence Technology*, vol. 14, no. 4, pp. 336–345, 2018. [Online]. Available: <https://doi.org/10.1016/j.dt.2018.04.001>

[27] M. Islam, G. Chen, and S. Jin, "An overview of neural networks," *American Journal of Neural Networks and Applications*, vol. 5, no. 1, pp. 7–11, 2019. [Online]. Available: <https://doi.org/10.11648/j.ajna.20190501.12>

[28] A. LorenziLuiz, C. P. da Silva, and J. L. Campagnolo, "Using a back-propagation algorithm to create a neural network for interpreting ultrasonic readings of concrete," *Conference: 16th World Conference on Nondestructive Testing*, 2004. [Online]. Available: <http://doi.org/10.13140/RG.2.1.2396.0809>

[29] W. Jenkins, "Approximate analysis of structural grillages using a neural network," *Proceedings of the Institution of Civil Engineers-Structures and Buildings*, vol. 122, no. 3, pp. 355–363, 1997. [Online]. Available: <https://doi.org/10.1680/istbu.1997.29814>

[30] A. Zilouchian, F. Hamono, and T. Jordanides, "Intelligent control using artificial neural networks and fuzzy logic: Recent trends and industrial applications," *Methods and Applications of Intelligent Control*, pp. 69–102, 1997. [Online]. Available: https://doi.org/10.1007/978-94-011-5498-7_3

[31] M. {Ali Saud Al Tobi}, G. Bevan, P. Wallace, D. Harrison, and K. Ramachandran, "A review on applications of genetic algorithm for artificial neural network," *International Journal of Advance Computational Engineering and Networking*, vol. 4, no. 9, pp. 50–54, Sep. 2016.

[32] A. Jain, J. Mao, and K. Mohiuddin, "Artificial neural networks: a tutorial," *Computer*, vol. 29, no. 3, pp. 31–44, 1996. [Online]. Available: <https://doi.org/10.1109/2.485891>

[33] S. Chopra, D. Yadav, and A. Chopra, "Artificial neural networks based indian stock market price prediction: before and after demonetization," *International Journal of Swarm Intelligence and Evolutionary Computation*, vol. 8, no. 1, 2019. [Online]. Available: <https://doi.org/10.4172/2090-4908.1000174>

How to cite this article:

Zaman Imad Nazzal and Ala'a Abdulrazaq Jassim, (2025). 'Performance prediction of reverse osmosis in large Basra water desalination project using artificial neural networks', Al-Qadisiyah Journal for Engineering Sciences, 18(n), pp. xxx- 007. <https://doi.org/10.30772/qjes.2024.152275.1326>