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Planetary gear mechanisms (PGMs) are commonly employed in mechanical applications. Graph theory is a
useful tool for synthesizing PGM structures to develop new transmission systems. The synthesis of 1 and 2
Degree-of-freedom (DOF) planetary gear trains received a lot of attention. Nevertheless, the synthesis results
are inconsistent because previous graph representations were insufficient for the synthesis processes. This paper
proposes a graph model that improves upon earlier models, introducing the concept of type-2 pseudo-isomorphic
graphs. The vertex levels are used to construct PGM-spanning trees and define geared graphs. This approach avoids
pseudo-isomorphic graphs and maintains a one-to-one correspondence between PGM elements and the graph.
The 6-link 2-DOF PGM synthesis demonstrated the current graph representation, yielding 24 non-isomorphic
mechanisms—11 more than previously reported. Possible explanations for the inconsistency of synthesis results
with earlier studies are investigated, and the advantages of the modified graph over existing approaches are
discussed.
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1. Introduction

1.1 Graph representation and structural synthesis
Graph theory is the mathematical study of graphs used to build pairwise
relationships between objects, and has gained importance in various fields
such as operational research, chemistry, sociology, and genetics [1–7]. This
is crucial in real-world applications, such as mechanical engineering design
[8–10], where mechanisms within the same category, like planetary gear trains
(PGTs), vary significantly. Mechanical engineering applications widely use
PGTs due to their lightweight, high-speed reduction ratio, compact size, and
differential drivability [11–14]. A planetary gear train (PGT) is a form of gear
train in which some of the gears rotate around one or more central gears in
addition to spinning around their own joint axis. Shafts mounted on a common
stationary frame fit the central gears. The PGT represented in Fig. 1a is a
one-degree-of-freedom PGT with two carriers and is composed of links 1, 2,
3, 4, 5, and 6. Bearings housed inside the frame (ground link 0) hold up the
PGT, resulting in a two-degrees-of-freedom (DOF) fractionation mechanism
that allows the PGT to freely spin with respect to its frame [15]. The revolute
joints of the co-axial links 1, 3, 4, and 6 rotate around the principal axis of the
central shaft (axis a). Planet gear refers to the gear that is not adjacent to the
ground link. A typical PGM consists of a PGT supported by the frame along
its common axis. A conventional graph, shown in Fig. 1b, can represent the
PGT shown in Fig. 1a, according to Buchsbaum and Freudenstein [16]. In this
graph, vertices are links, thin edges are revolute joints, and thick edges are
geared joints. Figure 1c shows its graph representation using Yang et al.’s [17]
perimeter loop graph model. Buchsbaum and Freudenstein [16] pioneered the

use of graphs to demonstrate the topology of PGTs. A graph is a mathematical
structure with vertices connected by edges that represent pair relations between
links.

(a) Functional schematic

(b) Conventional graph (c) Graph representation according
to[17]

Figure 1. Simpson PGT and its graph representation.
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According to Buchsbaum and Freudenstein [16], the graph in Fig. 2a can represent the PGMs as shown in Fig. 2b, c, d, and e.

Nomenclature
di The degree of a vertex i m The maximal degree of a vertex
DOF Degree of Freedom n Number of Links
e Number of edges PGT Planetary gear train
er The number of revolute edges PGM Planetary gear mechanism
eg The number of geared edges TV Transfer vertex
F Number of degrees of Freedom i V DA The vertex degree array
FC Fundamental circuit V DS Vertex degree string
J The total number of joints Vk The number of vertices of degree k (k=1,2,3,. . . ,m)
Jr The number of revolute joints v Number of vertices
Jg The number of geared joints Vm Number of binaries, ternary. . .m-nary vertices
L Number of independent loops i [Vm] Link assortment array for spanning tree
LA Link assortment

Aside from the foregoing, Freudenstein [18] developed Boolean calculations
to accurately predict the transfer vertex that corresponds to the planet car-
rier. Tsai and colleagues proposed ”canonical graph representation”[19] to
construct graphs that meet the structural properties of PGMs. Del Castillo
and Salgado [20,21] used a three-row graph to represent PGTs without idle
links. One of the challenges in automating the parent graph technique [22]
is determining the appropriate transfer vertex for each fundamental circuit.
The procedure for drawing this kind of conclusion automatically is notably
challenging [23]. Conventional graph representation makes a lot of pseudo-
isomorphic graphs [24] when there are three or more coaxial links in a PGT.
But when there are fewer than three coaxial links, it makes graphs with no
specified principal axis [25]. These graphs lack a specified principal axis,
allowing a single graph to represent multiple PGMs. PGM structure synthesis
is a fast-expanding subject in mechanism investigations [26–37]. The primary
goal of PGM structural synthesis was to generate a database that included all
N-link and F-DOF-geared graphs. Shanmukhasundaram et al. [36] reviewed
almost all of the algorithms used for PGT structure synthesis. All previous
PGT synthesis methods excluded isomorphic graphs [38–46].

(a) Graph representation according to [6–9]

(b) (c)

(d) (e)

Figure 2. Graph and functional schematic representations with different prin-
cipal axes.

Matching vertices, edges, and incidences makes two graphs isomorphic. The
isomorphic test [?] uses the relationship between vertices and edges, which
makes two graphs isomorphic. Hsu [37] and Tsai and Lin [47] synthesized
the six- and seven-link two-DOF PGTs, whereas Yang et al. [23] synthesized
PGTs with up to nine links. Abdali and Esmail [10] recently synthesized 7-
link 3-DOF PGMs and discovered seven non-fractionated mechanisms—four
more than before. Researchers have developed methods to enumerate PGTs,
categorized into recursive, genetically compatible, parent-graph-based, and
acyclic graph-based methods. According to previous research, the recursive
technique does not enumerate the entire set of non-isomorphic graphs satis-
fying the given number of links and DOF [10, 28]. For a larger number of
links, it is reasonable to assume that the recursive method will produce graph
solutions that are far from complete (i.e., combinatorially). While the parent
graph-based and acyclic graph-based methods are systematic and align with
the structural synthesis of PGTs, they require the specification of a graph’s
principal axis to guarantee its uniqueness. Without specifying the principal
axis, the graph lacks a hollow vertex or a solid polygon, resulting in a sin-
gle graph representing multiple mechanisms. Furthermore, the inability of
these graph models to generate multiple joints with fewer than three coaxial
links prevents the generation of certain PGMs. Therefore, these graph models
are unable to generate mechanisms with two coaxial links. One of the key
motivations for using graph theory in mechanism design is that it allows for
the investigation of all combinatorial possibilities. In this sense, the parent
graph-based and acyclic graph-based methods are ineffective. Enumerating dis-
placement graphs is a difficult combinatorial problem because it necessitates
avoiding pseudo-isomorphic graphs, which are well described in the litera-
ture. Pseudo-isomorphic graphs are kinematically equivalent, mathematically
non-isomorphic displacement graphs. As a result, the topological represen-
tation method for a displacement graph should be such that it is equal to all
of its pseudo-isomorphs. In this context, the more recent displacement graph
representation given by Yang et al. [17] is inappropriate since it produces a
large number of type-2 pseudo-isomorphic graphs. A thorough review of the
literature indicates the necessity for a systematic algorithm for constructing
displacement graphs without producing pseudo-isomorphs.

1.2 Scope and contribution
Several graphs have been proposed in the literature to represent the structure
of PGTs. Because most existing graph representation methods do not have
one-to-one correspondences with PGTs, producing and representing graphs
for all PGTs is inefficient in the following ways:

1. Two types of displacement graphs are used to represent PGTs: either
with or without hollow vertices (solid polygons).

2. When the principal axis of a graph isn’t specified, i.e., the graph contains
no hollow vertex or solid polygon, a single graph represents several
mechanisms.

3. Type-2 pseudo-isomorphic graphs, a concept introduced in this work,
are unavoidable in the previous graph representations, and

4. Other models cannot create some PGMs. Multiple joints with fewer
than three coaxial links cannot be produced via parent graph-based and
acyclic-based methods.

This paper aims to analyze the shortcomings of previous graph representations
of PGTs and to propose a modified rooted graph that allows for graph con-
sistency, which will aid in the development of efficient and reliable structure
synthesis tools. As a result, there is a need for an efficient and trustworthy graph
representation for PGM synthesis, as well as an evaluation of existing kine-
matic synthesis results to validate the proposed rooted graph-based technique.
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This is the first objective of this paper. This work describes the shortcomings
of the graph representation of PGTs and proposes a modified rooted graph that
ensures graph consistency. Graph theory knowledge is useful in building effi-
cient algorithms for enumerating candidate graphs. The findings obtained with
different methods for enumerating PGTs are frequently inconsistent due to the
differences in the methods themselves. As a result, an effective and dependable
structural synthesis method is required, as well as an evaluation of current
results to validate the associated methodology. This is taken up as Objective
2, and the structural synthesis results of 6-link 2-DOF PGMs composed of
PGTs with specified principal axes are utilized to determine the root causes of
inconsistencies in previous synthesis results. The new model for planetary gear
mechanisms is improved over prior ones due to its one-to-one representation
with PGT, a single graph for a single mechanism, and the absence of Type-2
pseudo-isomorphic graphs. This study also addresses the limitations of other
graph representations, including being unable to generate certain PGMs and
the failure to construct multiple joints with fewer than three coaxial links.

1.3 Paper structure
We organize the paper as follows: Section 1 provides a summary of the key intro-
ductory principles, such as the rooted graph representation, pseudo-isomorphic
mechanisms, vertex levels, and an introduction to graph representation. Secti-
on 2 discusses the creation of a modified graph representation that combines
Hsu and Lam’s graph representation and Tsai and colleagues’ canonical graph
representation. We introduce the concept of a ”gray region,”defined as a sub-
graph consisting of all revolute edges with an identical label. As a result,
identifying the edge levels is unnecessary because their features are already
present in the rooted graph. Section 2 also introduces the concept of type-2
pseudo-isomorphic PGMs. Section 3 utilizes vertex levels, transfer vertices,
and link assortments to create labeled spanning trees (rooted acyclic graphs).
We build potential geared graphs from labeled spanning trees by designating
transfer vertices and distributing geared edges. The newly proposed method
solves the transfer vertex identification problems that are typical when auto-
mating any method. There are specific rules for incorporating geared edges
with spanning trees and constructing geared graphs. Vertex-degree arrays are
created and used to verify geared graphs. No graph can be considered a PGM
if it violates the VDAs of the parent graph. Section 4 discusses the synthesis
results of 6-link 2-DOF PGMs and serves as a summary of the work. Possible
explanations for the inconsistent synthesis results with previous studies are
explored. Finally, in section 5, certain conclusions are formed.

(a) Functional schematic

(b) Conventional graph representation (c) Rooted graph representation

Figure 3. Simpson PGM and its rooted graph representation [15].

1.4 Basic introductory concepts
1.4.1 Rooted graph representation
The existing graph representation methods for the displacement graphs of PGTs
need rotation graphs as the intermediate step. This paper proposes a method
for directly obtaining displacement graphs, referred to here as rooted graphs,
from functional schematic graphs. The rooted graph of a PGM is obtained as
follows:

1. Create a conventional graph.
2. Delete all same-level revolute edges (excluding the one linked to the

root), and
3. Connect the root vertex to the vertices that intersect at those same-level

edges.
The first graph in Fig. 3 shows a conventional graph representation of both
the PGT and the casing. Figure 3b illustrates the process of obtaining a rooted
graph from Fig. 1a by removing the edges with label (a). Vertices 1, 3, and 6
are then joined to the root vertex designated ”0”. The PGT may have several
movable carriers throughout space. This study will concentrate on PGMs,
which are made up of PGTs held together by a fixed link (the casing).
The present work describes the shortcomings of graph representation and
proposes a new graph that allows for graph consistency. The main objective of
this paper is to suggest a modified graphic model of the PGM structure. The
new graph representation is capable of completely avoiding the creation of
pseudo-isomorphic graphs. In addition, it does not generate a single graph
for PGMs with different principal axes. The paper outlines a technique for
creating 2-DOF PGMs without isomorphic structures. Six-link 2-DOF PGMs
are synthesized. Two graphs are considered isomorphic if their identification
numbers match and they share the same spanning tree. Abdali and Esmail [50]
present a procedure for finding and eliminating isomorphic graphs during the
synthesis process of PGMs. In the present study, their method was used to
detect isomorphism. To avoid redundancy and due to space limitations, the
reader can return to the procedure details in the previous study. The method
developed by Esmail [48] is utilized to eliminate degenerate structures during
the synthesis process.

(a) Schematic diagrams (b) Graph representations

(c) Schematic diagrams (d) Graph representations

Figure 4. Planetary gear mechanisms.

1.4.2 Pseudo isomorphic mechanisms
It is difficult to represent a mechanism in a unique way on a graph because
the graph can only represent binary joints. This is because a trinary joint can
be represented by two binary joints made up of links 2 and 3, and 3 and 4, or
by links 2 and 4, and 4 and 3. However, as a result, many revolute joints must
share a common axis (they must be at the same level). A PGM composed of
two or more coaxial links along a shared axis that are held up by the frame may
comprise several pseudo-isomorphic mechanisms. As an illustration, rearran-
ging the revolute joints between the coaxial links can transform the mechanism
shown in Fig. 4a into the mechanism illustrated in Fig. 4c. Figures 4b and
Fig. 4d show graphical representations of the two mechanisms. Although the
two mechanisms are kinematically equivalent, the graphs are not mathemati-
cally isomorphic. Figure 4d is constructed by substituting the revolute edge
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joining vertices 3 and 2 in the latter with a revolute edge of the same label
connecting vertices 3 and 4 in the former. Figure 5 depicts the method for
obtaining the rooted graph from Fig. 4b. The rooted graph in Fig. 5 can be
constructed using Fig. 4d. The problem of pseudo-isomorphism is removed by
using a rooted graph. In this paper, we shall refer to this kind of isomorphism
as a type-1 pseudo-isomorphism.

(a) Conventional graph (b) All same-level revolute edges
are deleted

(c) Connect the same-level edges to
the root vertex

Figure 5. Obtaining the rooted graph from Fig. 4b.

Figure 6. Vertex levels.

Figure 7. A PGT with a multiple-joint at the joint axis (a).

1.4.3 Vertex levels
Levels are assigned to vertices. The ground-level vertex represents the root.
First-level vertices are located one revolution edge from the root; second-level
vertices are two; and so forth. Figure 6 shows the vertex levels. A spanning

tree contains details about all the revolute joints, their corresponding TVs,
and their axes levels. The axes are required to draw a PGM out of a particular
displacement graph. This discussion will be limited to the perimeter loop graph
model because what applies to it also applies to other models.

1.5 An Introductory discussion of graph representation
1.5.1 Representation of PGTs by two types of graphs
A careful examination of the displacement graphs shown in Fig. 1c and Fig. 2a
reveals two types of displacement graphs: Fig. 1c shows a graph with a hollow
vertex (multiple joint or solid polygon), and Fig. 2a shows a graph without a
hollow vertex or solid polygon. Even though Hsu and Lam [49, 50] presented
graphs that could distinguish between multiple and simple revolute joints and
Yang et al. [17] presented graphs with solid and hollow vertices, the graph in
Fig. 2a is the same as the conventional graph represented by Buchsbaum and
Freudenstein [16], i.e., it lacks a hollow vertex. In Refs. [22, 23, 25, 51, 52],
PGTs are also presented by two kinds of graphs: graphs having a minimum of
one hollow vertex (solid polygon) and graphs without any hollow vertex (solid
polygon). Methods based on parent graphs and acyclic graphs may generate
graphs lacking solid polygons or hollow vertices. The hollow vertex does not
appear in the graphs of PGTs with fewer than three coaxial links [17, 22, 23].
The reason behind this is that PGT graphs are represented using the following
rule: ı̈f a loop is entirely formed of revolute edges, the revolute edges in the
loop are deleted, and the solid vertices in the loop are connected to a common
hollow vertex by new revolute edges.Ä hollow vertex cannot exist if there are
fewer than three revolute edges, so a loop cannot be formed. The multiple-joint
or hollow vertex represents the revolute joints of coaxial links in PGMs, which
revolve around the principal axis. Therefore, the principal axis is not stated in
graphs that do not have a hollow vertex.

1.5.2 One graph represents several PGMs
When the principal axis of a graph isn’t specified, i.e., the graph contains no
hollow vertex, a single graph represents several mechanisms. For example,
the difference between Fig. 2b and Fig. 2c is noticeable; gear 5 in Fig. 2b is a
sun gear, whereas it is a planet gear in Fig. 2c. Although they represent two
different mechanisms, they are represented by a single graph, as illustrated in
Fig. 2a.

1.5.3 PGTs without graph representation
Figure 7 depicts a PGT with a multiple-joint at the joint axis (a). The revolute
pairs of links 1, 3, and 4 all have an identical level (a) and correspond to a mul-
tiple joint of degree three. The perimeter-loop method [17] was not effective
in identifying the graph for the PGT illustrated in Fig. 7 with a multiple-joint
at the joint axis (a).

2. New modified rooted graph
The combination of Hsu and Lam’s graph representation with Tsai and collea-
gues’ canonical graph representation resulted in the development of a modified
graph representation. The modified graph model has the following features:

1. All graphs feature at least one binary or multiple-joint called the root
vertex, representing the revolute joints about the fixed link or housing
of the mechanism.

2. The subset of a graph consisting of only the revolute edges with the
same label that are connected to a shared lower-level vertex is commonly
known as a ”gray region.”Modified spanning trees have as many labels
as single edges and/or edge families (gray regions). The use of gray
regions in spanning trees has the advantage of not requiring each edge
to be labeled. All exhaustive labeling alternatives for the edges of a
spanning tree can be replaced by spanning trees with gray regions.

3. For the first time, the concept of type-2 pseudo-isomorphic graphs is
introduced in the graph representation of PGMs. When many gears in
a PGM share a similar carrier on different joint axes and there is no
geared joint between them, type-2 pseudo-isomorphic mechanisms are
generated. For the graph representation presented by [17,49,52], type-2
pseudo-isomorphic graphs are unavoidable. The new graph model with
gray regions eliminates the problem of type-2 pseudo-isomorphism at
the outset.

4. The constituents of a rooted graph correspond one-to-one to those of a
PGM. Table 1 shows this correspondence, while Table 2 includes some
corresponding characteristics of PGMs and rooted graphs.
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Table 1. Rooted graph corresponds with PGMs.

PGMs S. Rooted Graphs S. Correspondence
relationship

Joints J Edges e J = e
Links n Vertices v n = v
Geared joints Jg Geared edges eg Jg = eg
Revolute joints Jr Revolute edges er Jr = er
Links having i joints ni Vertices of degree i vi ni = vi
Joints on link i ji Degree of vertex i di ji = di
Total loops L Total loops L L = (L+1)
Independent loops L Ind. fundamental circuits L L = n−1−F

Table 2. Structural Characteristics of PGMs and Rooted Graphs.

Rooted Graphs PGMs
e = eg + er J = Jg + Jr
DoF = 3(v−1)−2er − eg DoF = 3(n−1)−2Jr − Jg
L = e− v+1 L = J−n+1
∑i di = 2 e ∑i ji = 2 J
∑i vi = v ∑i ni = n
∑i i vi = 2 e ∑i ini = 2J
∑i i Li = L = L+1 ∑i i Li = L = L+1
Isomorphic rooted graphs Isomorphic mechanisms

(a) Schematic representation (b) Canonical graph representation [15]

(c) Schematic representation (d) Canonical graph representation [15]

Figure 8. Planetary Gear Mechanisms.

2.1 Spanning trees
A tree is a connected graph that has (v-1) edges but no circuits. A single path
connects any two vertices of a tree. By connecting any pair of non-adjacent
vertices of a tree by an edge, a single circuit is created. Figure 8 shows the
canonical graph representation of two PGMs. The modified spanning trees for
the canonical representation of the graphs in Figs. 5 and 8 are illustrated in
Fig. 9. All revolute edges of an identical label that are incident on a shared
lower-level vertex form a family. Revolute edges of varied labels join vertices
of distinct families to lower-level vertices. This results in a spanning tree with
component subgraphs made up of all edges with the same label. For this reason,

the subgraph created by the revolute edges with identical labels is referred to
as a gray region. The subgraph produced by edges 0-2, 0-3, and 0-4, with the
same label, generates a gray region in Fig. 9; edges 2-1 and 2-5 form another
gray region in Fig. 9b. For a geared edge to connect two vertices, its path
must contain exactly two levels. Gear edges cannot be used to connect two
vertices on the same gray region. A geared edge cannot exist between the two
second-level vertices (1 and 5) in Fig. 9b, but it is inevitable in Fig. 9c. A
specific gray region contains revolute edges with identical levels, while all
other revolute edges have unique levels. Thus, it is unnecessary to identify
the edge levels, as their details already exist in the rooted graph. Modified
spanning trees have as many labels as single edges and/or edge families (gray
regions). All exhaustive labeling alternatives for the edges of a spanning tree
can be replaced by spanning trees with gray regions. The path between two
vertices where a geared edge is incident must have two revolute edges, two
gray zones, or one of each. Gear edges can’t be used to connect two vertices
that are in the same gray region. A spanning tree of a rooted graph reveals
transfer vertices (TVs), which can be used to locate all vertex pairings required
to add gear edges. A fundamental circuit transfer vertex is a spanning tree
vertex that is connected to more than two revolute edges, two gray regions,
or a combination of both. Vertices 2 and 4 are the two TVs in Fig. 9a, while
vertex 2 is the only TV in Figs. 9b and Fig. 9c. Any FC must have a geared
edge and two labeled revolute edges separated by a TV.

(a) (b)

(c)

Figure 9. The modified spanning trees of Figs. 5 and Fig. 8.

2.2 Type-2 pseudo-isomorphic PGMs

Here, we introduce the concept of type-2 pseudo-isomorphic PGMs. When
many gears in a PGM share a common carrier on different joint axes and there
is no geared joint between them, it is feasible to reposition the axes of these
gears without influencing the performance of the PGM. Figures 10a and 10b
show two PGMs that only vary in the labeling of the edge levels of links 1
and 5. Figures 10a and 1b display two PGMs with variations in the edge level
labeling of links 1 and 5. In Fig. 10a, links 1 and 5 are labeled on distinct joint
axes ”bänd ”c”, whereas in Fig. 10b, they are on the same joint axis ”b”. They
are structurally non-isomorphic, but equivalent in terms of their functions,
making them isomorphic. These kinematically equivalent PGMs are referred
to as ”type-2 pseudo-isomorphic”PGMs. If the levels of co-shaft links are
considered identical, all possible type-2 pseudo-isomorphic mechanisms can
be depicted using just one graph. The levels of links 1 and 5 in Fig. 10a can be
moved to be at the same level as depicted in Fig. 10b, with no effect on the
PGM’s functionality. Therefore, the corresponding graphs of these two PGMs
can be displayed as a single graph, as illustrated in Fig. 10c.
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Table 3. Spanning trees for VDAs.

(4,2,1,1,1,1) ⇒ ——— (3,3,1,1,1,1) ⇒

(3,2,2,1,1,1) ⇒ (2,4,1,1,1,1) ⇒

(2,4,1,1,1,1) ⇒ ——— (2,3,2,1,1,1) ⇒

(2,3,2,1,1,1) ⇒ (2,2,3,1,1,1) ⇒

(2,2,2,2,1,1) ⇒

(a) (b)

(c)

Figure 10. Type-2 pseudo-isomorphic PGMs.

3. Synthesis of PGMs
3.1 Generation of spanning trees and labelled graphs
The subsequent Eq. 1 and Eq. 2 can be utilized to construct spanning trees
Eq. 1.

Vi +Vi + ...+Vm = v (1)

Where v refers to the number of vertices, m refers to the maximal degree of a
vertex, and Vk refers to the number of vertices of degree k (k = 1,2,3, . . . ,m),
Eq. 2.

V1 +2V2 +3V3 + ...+mVm = 2(v−1) (2)

For a 6-vertex spanning tree, Eq. 1 and Eq. 2 yield four-link assortments
(LAs), namely [4, 1, 0, 1], [4, 0, 2, 0], [3, 2, 1, 0], and [2, 4, 0, 0]. Link
assortments are used to generate the vertex degree arrays (VDAs). VDAs are
utilized to draw the spanning trees. Classifying spanning trees into various
categories is possible by examining the order of the gray region, which is
numerically equivalent to the number of edges in the region with the same label.

Type 1: [4,2,1,1,1,1]
Type 2: [3,3,1,1,1,1], [3,2,2,1,1,1]
Type 3: [2,4,1,1,1,1], [2,3,2,1,1,1], [2,2,3,1,1,1], and [2,2,2,2,1,1].

The graphs that correspond to the above VDAs are displayed in Table 3. The
TVs can be easily identified in a spanning tree using the newly developed
method. A TV of fundamental circuits (FCs) is any vertex in a spanning tree
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that is incident with a minimum of two single edges, two gray regions, or their
combinations.

(a) (b)

(c) (4,3,3,2,2,2) (d) (3,3,3,3,2,2) (e) (4,3,3,2,2,2)

(f) (g) (3,3,3,3,2,2)

(h) (i) (3,3,3,3,2,2) (j) (3,3,3,3,2,2)

Figure 11. The addition of geared edges to spanning trees and the associated
VDAs.

Because all labeled spanning trees do not have isomorphic tree topologies, dis-
placement graphs from them should be created before doing an isomorphism
check to generate a comprehensive variety of alternatives. Labeled spanning
trees are utilized to identify transfer vertices and distribute geared edges, re-
sulting in possible geared graphs. The gearing graphs are validated using the
VDAs. Rather than fitting all spanning trees with parent graphs, geared graphs
that do not conform to the VDAs of the parent graphs are eliminated. This
improves the computational efficiency of the synthesis method.

3.2 Geared graph synthesis
Adding geared edges to spanning trees is frequently utilized to generate geared
graphs. To connect two vertices, a geared edge must have two gray regions,
two revolute edges, or one gray region and one revolute edge. An n-link 2-DOF
PGM graph has n-3 geared edges and L = eg = n−1−F independent loops.
Every possible link assortment for 6-link 2-DOF PGMs may be determined
using the following two equations.

V1 +V3 + ...+Vm = v (3)

2V2 +3V3 +4V4 + ...+mVm = 3e (4)

with v = 6, F = 2, e = 8 and m = 6−2 = 4. Equations 5 and 6 were developed
from Eqs. 3 and 4, respectively.

V2 +V3 +V4 = 6 (5)

2V2 +3V3 +4V4 = 16 (6)

Equations 5 and 6 can be solved to obtain three link assortments. Table 4
displays the link assortment (LA) and the VDAs of the geared graphs.

Table 4. Link assortments and VDAs.

LA VDA
[2,4,0] [3,3,3,3,2,2]
[3,2,1] [4,3,3,2,2,2]
[4,0,2] [4,4,2,2,2,2,2]

Geared graphs that fail to conform to the VDAs will be removed.

3.3 Adding geared edges
As an illustration of the concept of adding gearing edges, Figs. 11a and 11F
depict the spanning trees for the VDA [3, 3, 1, 1, 1, 1]. A total of three geared
edges is required. Since vertices 4 and 5 in Figs. 11a and 11f are connected
to only one vertex, vertex 2; two different scenarios can occur. In the first
scenario, illustrated in Fig. 11b, the graph can be completed by adding only
two more geared edges. This is because one geared edge already connects the
two vertices on the second level. To prevent creating a redundant link, connect
the two two-level vertices (1 and 3) to the two second-level vertices. Given that
the two geared edges may be shared by the two second-level vertices, three
different configurations are feasible. There are three possible combinations:
(2+0), (1+1), and (0+2). The graphs resulting from the (2+0) and (0+2) dis-
tributions are isomorphic due to the similarities between vertices 1 and 3, as
depicted in Fig. 11c and 11e. These graphs will be further examined below.
As shown in Figs. 11c and 11d, there are only two distinct, non-isomorphic
ways to distribute the three geared edges among the two vertices at the first
level. In the second scenario, the two vertices on the second level are not
connected by a geared edge. Since vertex 2 on the first level is connected to
the second level vertices 4 and 5, there are only two possible distributions in
which the three geared edges connect those two vertices to vertices 1 and 3
on the first level. In terms of the arrangement of the geared edges between
the vertices on the second level, two possible configurations exist. They can
also be distributed in two distinct ways between the first-level vertices. Three
isomorphic graphs result from the four distributions depicted in Figs. 10g,
10h, . 10i, and 10j. Thus, as shown in Fig. 11g, we have exactly one graph
that is not isomorphic. It is crucial at this point to confirm the isomorphism
of all graphs generated. Table 5 provides an exhaustive list of the results of
graphs that are not isomorphic.

4. Results and discussion
4.1 Structural synthesis results
This paper presents our proposal for synthesizing 2-DOF PGMs, as well as
the modified graph. A PGM typically consists of a PGT that the housing holds
up along a common axis. With the housing supporting the PGT, the resulting
PGM is a fractionation mechanism that gives the PGT an additional DOF
to spin with respect to the housing freely. First, the present work describes
the shortcomings of graph representation and proposes a modified graph that
allows for graph consistency. When a PGT has three or more co-axial links,
the conventional graph representation generates a large number of pseudo-
isomorphic graphs, whereas when there are fewer than three co-axial links,
graphs with no specified principal axis are generated. Because the principal
axis in these graphs is not specified, a single graph represents several PGMs.
The new graph representation is capable of completely avoiding the formation
of type 1- and type 2-pseudo-isomorphic graphs, a concept that is first intro-
duced in this work. In addition, it does not generate a single graph for PGMs
with different principal axes. Second, the synthesis of 2-DOF PGM-spanning
trees follows Eqs. 1 and 2. The improved approach using gray-region spanning
trees is used to create all exhaustive labeling possibilities for the edges of
non-isomorphic tree topologies. They are created using vertex levels, transfer
vertices, and VDAs. A transfer vertex is a spanning tree vertex that connects
two revolute edges, two gray regions, or both. Table 3 shows an extensive list
of sixteen grey-region-spanning trees. Third, the labeled spanning tree atlas is
used to create 2-DOF PGMs, generating potential graphs by detecting transfer
vertices and distributing geared edges. The procedure involves generating three
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vertex-degree arrays of geared graphs, as illustrated in Table 4, validating them,
and comparing isomorphic identification numbers. The geared graphs that
originate from various spanning trees do not have the same structure. Notably,
geared graphs formed from different spanning tree types cannot be isomorphic.
Section 3.3 outlines requirements for geared edges, while Table 5 displays the
twenty-four non-isomorphic gearing graphs for 6-link 2-DOF PGMs.

4.2 Results comparison and validation
Unlike earlier findings by Hsu and Hsu [51], Yang and Ding [22], and Shanmuk-
hasundaram et al. [52], twenty-four non-isomorphic mechanisms are revealed.
The 6-link 2-DOF PGM synthesis results are summarized in Table 6.

Table 5. The synthesis results of generating geared graphs.

Yang and Ding [22] used the parent graph method to enumerate 13 displace-
ment graphs for the 5-link 1-DOF PGTs. The 13 graphs are listed in the third

column of Table 7. Upon closer inspection of the thirteen displacement gra-
phs, two distinct kinds become apparent: those having multiple joints (hollow
vertices) and those lacking such joints. A hollow vertex can be found in the
graphs labeled ”1-2”, ”1-3”, ”2-2”, ”2-3”, ”2-4”, ”3-2”, ”4-2”, and ”6-1”.
As a result, each of these eight graphs corresponds to a different 6-link 2-DOF
PGM with the stated functional properties, with the exception of the graphs
labeled ”2-3änd ”2-4”, which correspond to a single graph. The hollow vertex
corresponds to the common joint axis of the coaxial revolute joints that are
connected to the casing. Because the hollow vertex corresponds to the root in
the current graph representation, the graphs of the current method are com-
pletely identical to those of the Yang and Ding methods. The graphs with no
hollow vertex labeled ”1-1,2-1,3-1,4-1,änd ”5-1äre PGTs, but their joint axes
are not specified.

Table 6. Non-isomorphic geared graph synthesis.

n−PGT n−PGM
5 6

No. of labelled trees 2-DOF PGMs
16 24

4.3 Causes of conflicting results
4.3.1 Kinematic inversions
One distinguishing aspect of PGMs is the presence of coaxial revolute joints,
which attach certain PGT links to the casing. Connecting various PGM joint
axes to the casing does not impact the relative motions of the links. Their mo-
tions with respect to the ground, however, might be distinct. Multiple PGMs
can be created from a single PGT by selecting different common joint axes.

(a)

(b)

(c) (d) (e)

(f) (g) (h)

Figure 12. Three PGMs that all have the same PGT.
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Table 7. Results comparison.
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The hollow vertex or root distinguishes PGT from PGM. For example, the
PGT depicted in Fig. 12b corresponds to the graph labeled ”2-1ı̈n Fig. 12a.
Examining the three PGMs dedicated to Figs. 12c, 12d, and 12e, where the
common joint axes are labeled as ä”, we obtain their rooted graphs in Fig. 12f,
12g, and 12h. As a result, the number of graphs with no hollow vertex is less
than the number of rooted graphs predicted by the new method.

4.3.2 PGMs with two coaxial links

Another possible explanation is that other models cannot create some PGMs.
Multiple joints with fewer than three coaxial links cannot be produced via
parent graph-based methods. This is related to the PGT graph representation
method, which deletes revolute edges in a loop and joins solid vertices to a
common hollow vertex. Parent graph-based approaches cannot produce degree-
two hollow vertices due to the inability to construct a loop and the absence of a
hollow vertex with less than three revolute edges. Therefore, mechanisms like
the one shown in Fig. 13a cannot be created by it. Three new rooted graphs
are shown in Fig. 13b.

(a) Mechanism and its rooted graph

(b) Three novel rooted graphs

Figure 13. A new mechanism and its rooted graph.

4.3.3 Type-2 pseudo-isomorphic PGMs

The two types-2 pseudo-isomorphic PGMs illustrated in Figs. 10a and 10b
are represented by two graphs using the perimeter loop method [17]. They are
depicted in Figs. 14a and 14b. This graph model requires hollow vertices to
represent groups of revolute edges with the same label in a graph. This addition
increases the number of vertices and revolute edges. Figures 14a and 14b differ
not just in edge labeling, but also in the number of vertices and edges. This
creates a mismatch between the functional schematic and the perimeter-loop
graph representations. Because of these differences, hollow vertices cannot be
handled in the same way that solid vertices are.

(a) The corresponding graph for the
PGMs in Fig.10a according to [17].

(b) The corresponding graph for the
PGMs in Fig.10b according to [17].

Figure 14. Two type-2 pseudo-isomorphic graphs.

4.3.4 Inappropriate graph representation
For a v-vertex graph, the degree of freedom (F) is calculated using the formula
given in reference [10].

F =3× (v−1)−2× er −1× eg (7)

where eg = v−1−F is for geared edges and er = v−1 it is for revolutionary
edges. We have v = 7, er = 6, and eg = 3 for the graph in Fig. 14b. Equation 7
gives F = 3(7− 1)− 26− 3 = 3. Vertex selection refers to the process of
removing one revolute edge and replacing it with one of the same level. Using
this approach, the graph depicted in Fig. 15a can be transformed into Fig. 15d,
which includes two separate vertices. This makes it a 3-DOF fractionated
PGM. For the graph in Fig. 15d, v = 5, er= 4, and eg= 3 that gives F = 1.
Therefore, it is a 5-link 1-DOF PGT. The displacement graph in Fig. 14b does
not correspond exactly to the PGT or PGM in Fig. 10b. Hence, the parent graph
model is unable to appropriately represent a PGM with multiple joints. Due
to difficulties with the parent graph model, the PGM graph, which includes
multiple joints, was represented using a rooted graph model. Furthermore, all
approaches based on parent graphs and acyclic graphs create graphs without
multiple joints; however, this study finds that any graph includes at least one
multiple joint, which is typically a root vertex. Therefore, the current rooted
graph representation is more consistent than previous proposals.

(a) 3-DOF PGM (b) Applying vertex selection

(c) Two separating vertices (d) 1-DOF PGT

Figure 15. Fractionation process for the graph seen in Fig. 14b.

4.4 PGTs versus PGMs
PGTs, as previously stated, are PGMs that lack a fixed link. For example,
Fig. 16a shows a PGT with two joint axes. The significant difference between
PGM and PGT arises from the presence of coaxial revolute joints that join
specific links to the casing. The joint axis of the PGM determines these joints.
Two inversions can be derived based on which joint axis is connected to the ca-
sing. They are shown in Figs. 16b and 16c. The resulting 7-link PGMs consist
of one-DOF PGTs supported by the mechanism housing on the central axis.
Figures 16d and 16e display the rooted graphs for the two non-isomorphic
PGMs. Since the levels of the co-shaft links can be made identical, the PGM
shown in Fig. 16f is considered to be type-2 pseudo isomorphic to the PGM
shown in Fig. 16b, while the PGMs shown in Figs. 16g, 16h, and 16i are
considered to be type-2 pseudo isomorphs of the PGM displayed in Fig. 16c.
Therefore, Figs. 16d and 16e are the only two non-isomorphic graphs repre-
senting the two kinematic inversions of the PGT shown in Fig. 16a. In the
perimeter-loop graph representation, the joint axis or multiple joints are repre-
sented by a hollow vertex [17]. It also generates the PGTs based on the biggest
vertex degree string (VDS) [46] while excluding the smallest. Since the PGT
shown in Fig. 16b has the largest VDS, the PGT shown in Fig. 16c is excluded
because its VDS is smaller. Therefore, the perimeter-loop graph representation
approach fails to capture the mechanism shown in Fig. 16c. The perimeter-loop
graph representation of the two PGTs is shown in Figs. 16b and 16f are shown
in Figs. 17a and 17b. The type-2 pseudo-isomorphic PGTs are represented
by two non-isomorphic graphs. Additionally, the type-2 pseudo-isomorphic
PGTs, illustrated in Figs. 16g, 16h, and 16i are represented by three non-
isomorphic graphs in Figs. 18a, 18b, and 18c. Therefore, the perimeter-loop
graph representation generates several type-2 pseudo-isomorphic PGTs.
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(a) A PGT with two joint axes.

(b) A PGT with a joint axis at a. (c) A PGT with a joint axis at b.

(d) Rooted graph for the PGT at (b) (e) Rooted graph for the PGT at (c)

(f) Isomorphic to the PGM in Fig.
16 (b)

(g) Isomorphic to Fig. 16 (c)

(h) Isomorphic to the PGM in Fig.
16 (c)

(i) Isomorphic to the PGM in Fig.
16 (c)

Figure 16. Kinematic inversions and their type-2 pseudo-isomorphic PGMs.

(a) (b)

(c) (d)

Figure 17. a and b are two type-2 pseudo-isomorphic PGTs represented by c
and d, which are two non-isomorphic perimeter-loop graphs.

(a) (b) (c)

Figure 18. Three type-2 pseudo-isomorphic PGTs represented by three non-
isomorphic perimeter-loop graphs.

(a) (b)

(c) (d)

(e) VDS=3323232 for
L=01 ,5,6,4,2,02 ,1

(f) VDS=3233232 for
L=02 ,1,01 ,5,6,4,2

Figure 19. The PGM with the largest vertex degree string has a graph repre-
sentation.

4.5 PGMs without graph representation
The current rooted graph has a one-to-one correspondence to the PGM. When
we examine the problem from a different point of view, we notice that although
some PGTs have the same structure, their PGM structures differ. For example,
Figs. 19a and 19b display feasible functional diagrams for the graphs in 19c
and 19d of Fig. 19. Although the structures of both PGTs in 19a and 19b
of Fig. 19 are the same, their PGM structures are not. In the perimeter loop
graph technique, the PGM in Fig. 19a has a graph representation, whereas the
PGM in Fig. 19b does not. The maximal degree string loop [46] forms the
foundation of the perimeter loop method representation; this loop utilizes the
largest VDS and disregards the others. In Fig. 19e, for instance, the degrees of
the vertices 02, 1, 01, 5, 6, 4, and 2 are 3, 2, 3, 2, 3, and 2, respectively. Hence,
the corresponding VDS is 3233232. In Fig. 19e, in the sequenced maximal
loop L = 0, 1, 5, 6, 4, 2, 0, 2, 1, the degrees of the vertices 01, 5, 6, 4, 2, 02, and 1
are 3, 3, 2, 3, 2, and 2, respectively. As a result, the associated VDS is 3323232.
The loop with the highest vertex degree string, 3323232, is the one with the
maximum degree string. Consequently, the VDS 3233232 PGM is disregarded
by the perimeter loop-based method. This is one of the reasons why many
PGMs are often overlooked in perimeter loop-based techniques. The possibility
that Fig. 19e represents the PGMs in Figs. 19a and 19b leads to the fact that
the displacement graph and PGM do not have one-to-one correspondences.
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5. Conclusions
This work addressed the challenge of modeling PGMs with multiple joints by
using rooted graphs that correspond to the mechanism. It has been verified
that the modified rooted graph has the following advantages:

• While parent graphs and acyclic graphs yield graphs without multiple
joints, this study reveals that all graphs have at least one various joint,
the root vertex.

• In a gray region, all revolute edges have the same level, whereas others
have different levels. The rooted graph contains all edge information,
eliminating the need for labeling.

• This graph model avoids pseudo-isomorphic graphs.
• It maintains a one-to-one correspondence between PGM elements and

those of the rooted graph.
• Predicting PGMs with two co-axial links is more effective than acy-

clic graphs and parent graph-based methods due to constraints in their
representation and technique.

• The current rooted graph model does not allow for a gear connection
between two axes on the same shaft, which is a practical fact. There-
fore, it avoids type-2 pseudo-isomorphic graphs, a concept that is first
introduced in this work.

• The root vertex can be handled like any other vertex in the rooted graph
model.

The study develops a new method for PGM synthesis that is an improvement
over the existing approach. The vertex levels, link assortments, and transfer ver-
tices are used to build labelled spanning trees. The synthesis of 6-link 2-DOF
PGMs generated 24 non-isomorphic mechanisms, representing a considera-
ble increase over previous studies. Possible explanations for the inconsistent
synthesis results with previous studies are explored. Although the structure of
some PGTs is the same, the structure of their PGMs is not. PGMs are identified
by coaxial revolute joints, which connect PGT links to the housing. Connecting
various joint axes does not affect the relative motions of the links; however,
the ground motions may change. The significant difference between PGM and
PGT arises from the presence of coaxial revolute joints that join specific links
to the casing. All of the aforementioned modified graph advantages contribute
to a simpler synthesis procedure and more reliable synthesis results. In the
future, it is hoped that scholars will synthesize PGTs with more links and DOFs
using the current graph model. However, inspection was used in the study to
perform the structural synthesis. Because the synthesis procedure generates a
huge number of graphs, an appropriate application could automatically create
them. The automatic graph generation will make it easier to implement the
synthesis results. It is also possible, using graph theory and symbolic notation,
to generate unique identification codes for planetary gear mechanism structures.
The obvious advantage is the production of a decodable atlas that can be stored
in the computer’s memory.
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