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The sixth generation (6G) networks represent the revolutionary processes in the field of wireless networks, such
as ultra-dense network (UDN) frameworks, multi-dimensional connectivity, and network automation procured by
AI. Nevertheless, the high rate of small cell and heterogeneous network environment proliferation poses severe
challenges in handover management that result in higher signalling overhead, latency, and service interruptions.
This review paper investigates the latest handover management solutions in 6G UDNs with some of the most
significant challenges being mobility prediction, resource, and security constraints. We especially examine the new
solutions, such as machine learning (ML)-based mobility prediction models Long short-term memory (LSTM)
and gated recurrent unit (GRU), reinforcement learning (RL)-based handover decision models, and split federated
learning (SFL) of privacy-preserving optimization. Moreover, we will look at network-slicing integration and
blockchain-based security solutions as an effort to ensure an efficient and dynamic handover procedure. The
paper gives a methodological future study roadmap to optimisation of handover in ultra-dense 6G networks
which synthesizes existing approaches with research gaps identified. These results point to the necessity to
optimise the interactions between layers and coordinate network efforts by using artificial intelligence and the
proactive handover paradigm to provide seamless, low-latency, and energy-efficient mobility management in
future next-generation wireless networks.

� 2026 University of Al-Qadisiyah. All rights reserved.

1. Introduction
The sphere of wireless communications is experiencing blistering, which

is why in such a way, sixth-generation (6G) networks are identified as the next
critical stage of the development of world communication technologies. Accor-
ding to recent peer-reviewed work, the implementation of the fifth-generation
(5G) infrastructure has been growing on a global scale, and research and engi-
neering teams already start working on the development of the next generation
of wireless networking, which is expected to launch operations by 2030 [1]. 5G
networks are predicted to result in a considerable improvement of performance
metrics, thus making available completely new classes of applications. The
ongoing investigation is in the high-tech technologies. such as terahertz (THz)
communication, visible light communication (VLC), large intelligent surfaces
(LIS), as well as quantum communication techniques [2,3]. Simultaneously,
new network architectures and protocols are under development to support
these new technologies. One of the key research directions focuses on the
development of superior machine-learning tools, in particular, split federated
learning (SFL), which aims to enhance the obstacles related to data confiden-
tiality and efficiency [4]. At the same time, new mechanisms of handover are
being researched, and proactive handover has proven to be one of the most
promising approaches to providing smooth connectivity over high-mobility
situations. Some of the available and prospective services and technologies
relevant to the 6G ecosystem would include the following:

• Tera bits per second (Tbps) peak data rates.
• Sub-millisecond ultra-reliable low-latency communication.
• Gigantic number of connections Green, energy-efficient solutions.

• Learning-enabled intelligent networking Terrestrial, aerial, and satellite
(TAS).

• Three-dimensional (3D) coverage [5–7].

Many new challenges have been introduced with the introduction of sixth-
generation (6G) networks. They are complex and multifaceted issues that
require much research and development efforts and interdisciplinary cooperati-
on to mitigate them. According to scholars, 6G will not only provide significant
improvements to the current communication services, but it will also trigger
disruptive innovation in a broad range of industries, such as (but not limited
to) healthcare, mobility, industrial production, and digital entertainment [8, 9].
The vision outlined above is gradually coming into focus, due to the expected
contribution of 6G to the next generation of the global communication and tech-
nological ecosystem as an intermediary to a wide range of developments based
on next-generation wireless infrastructure. Although the full implementation
of 6G is a goal that can be achieved at some point in the future, its technical
implementation, policy-related, and societal consequences are issues that will
have to be addressed through the joint effort of researchers, regulators, and
industry stakeholders [10]. The context-aware handover management in 6G
networks represents a paradigm shift from traditional mobility management
approaches. It leverages multidimensional contextual information beyond con-
ventional metrics, encompassing user mobility patterns, application-specific
QoS requirements, network load conditions, and energy efficiency considerati-
ons. This approach enables dynamic and proactive handover decisions, crucial
in ultra-dense 6G environments, Fig. 1, where handover events are frequent,
and decision windows are narrow [9].

∗Corresponding Authors.
E-mail address: murtadhashukur@student.usm.my, Tel: (+964 780-171 8806) (Murtadha Shukur); and eemnmuzlifah@usm.my, (Nor M. Mahyuddin)

https://doi.org/10.30772/qjes.2026.166767.1798
2411-7773 � 2026 University of Al-Qadisiyah. All rights reserved. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://qu.edu.iq
https://qjes.qu.edu.iq
mailto:murtadhashukur@student.usm.my
https://orcid.org/0009-0000-1854-7205
mailto:eemnmuzlifah@usm.my 
https://orcid.org/0000-0002-8214-7414
mailto:murtadhashukur@student.usm.my 
mailto:eemnmuzlifah@usm.my 
https://doi.org/10.30772/qjes.2026.166767.1798
https://creativecommons.org/licenses/by-nc/4.0/


A
cc

ep
te

d
M

an
us

cr
ip

t..
.A

cc
ep

te
d

M
an

us
cr

ip
t..

.A
cc

ep
te

d
M

an
us

cr
ip

tMURTADHA SHUKUR AND NOR MAHYUDDIA / AL-QADISIYAH JOURNALFOR ENGINEERING SCIENCES 19 (2026) 001 – 018002

Nomenclature
Be f f Effective Bandwidth Wi Priority weight of slice i
b(v) Source slice EHO Total energy consumption associated with handover
Esig Energy Consumed in signaling Abbreviations
Eproc Processing Energy at the network nodes BS Base Station
Eexec Energy consumed during handover execution gNB Next-generation node B
E Total energy consumption related to handover SINR Signal-to-interference-plus-noise ratio
f (t,ω) Time-varying handover process (sec.) SNR Signal-to-noise ratio
K Number of users sharing the same pilot BER Bit error rate
L End-to-end latency URLLC Ultra-reliable low-latency communications
Li Latency components across n network layers eMBB Enhanced mobile broadband
NHO Number of handovers mMTC Massive machine-type communications
Ot Output gate vector Greek Symbols
P(H) Overall handover performance αi Corresponding weighting factors
Pf ai Probability of handover failure. ε Neighborhood of point
R Received power from the serving BS. ∀i Specifies the constraints
S Reliability metric α,β ,γ Scaling factors reflecting of each component
Ti Threshold for slice i v Velocity
THO Threshold (maximum acceptable cost) for slice i θ User movement direction
Tanh(ct) Handover interruption time λ BS density
to Hyperbolic tangent of the cell state Ŷ Vector of relevant network and user metrics at time
t f Initiation time-varying handover (sec.) σ Activation function
U Completion time-varying handover (sec.) Subscripts
θo Non-dimensional velocity component X-direction ĥ Estimated channel
θi Shared parameters h True channel
wb Slice-specific parameters ⊙ Hadamard product used to elements
Ui Utility of slice i

By tailoring handover mechanisms to individual user needs and network con-
ditions, context-aware management enhances overall Quality of Experience
(QoE) and facilitates the realization of user-centric 6G network operations. The
integration of machine learning (ML) techniques in 6G handover management
processes marks a significant progress towards intelligent and adaptive net-
works. ML algorithm, including supervised learning, reinforcement learning,
and intensive teaching architecture, provides powerful tools to process the vast
amounts of multidimensional data contained in reference-utterance systems.
These techniques enable user dynamics patterns and accurate predictions of
network conditions, which facilitate active and customized handover decisions
[5].

Figure 1. Taxonomy of ultra-dense networks regarding several criteria [11].

Advancement in capturing advanced nerve network models, such as RNN
and LSTM, user dynamics, and complex temporary dependence in network
dynamics. In addition, federated learning paradigms address the concerns of
privacy, which enable cooperative learning in district network institutions,
which is important to develop a strong and general handover model [12]. Net-
work Slicing in Handover Management enhances flexibility in the capability
to control resources allocated to a particular service and offers the flexibility
to slice the network for a dedicated service, all of which improves the 6G han-
dover management process. It allows the creation of multiple virtual networks
over a common shared physical infrastructure that can dynamically adapt and

allocate resources to different services [13]. With the slice-covered dynamics
of network slicing, the handover management can deploy certain types of
strategies with the objective that the user connects with the corresponding
appropriate set of network slices that can provide that service (i.e, defined at
the slice level). It is crucial for some use cases when the QoS is very strict,
like URLLC and eMBB applications [14]. where maintaining specific service
requirements during handover is critical. The coordination between network
slicing and ML-powered handover management enables highly adaptive mobi-
lity solutions by predicting slice resource requirements and optimizing slice
selection during handover events. The ML algorithm predicts slice resource
requirements undefined and optimizes slice selection during handover events
in the multi-slice environment [15]. This integrated approach enhances the
efficiency and reliability of handover processes; it provides truly adaptive
and user-focused solutions, as 6G paves the way for network operations. The
advent of ultra-dense networks in the new 6G era has drawn the concern of
the importance of handover management into focus. Small cells have become
extremely dense, up to small orders such as 100-1000 base stations per km2

in some cases, and conventional paradigms of the process of handover are
under intense pressure. The importance of effective handover management
here is both multifaceted and profound, which is overwhelmed by many aspects
of critical issues of network enhancement and user experience of equipment
[11]. First of all, the number of access points within UDNs is high, which
significantly raises the frequency of handovers [16]. This also means that there
are frequent handovers typically taking place in just a few seconds when users
transit the congested urban landscape, and as such, the signalling overhead is
increased, service satisfaction is reduced, and the amount of energy used is also
increased. The consequences of the inappropriate management of handover
in the described situation are not only temporary system conduct but rather
a prolonged effect that can destabilize networks and deteriorate the quality
of services. In addition, ultra-dense networks (UDNs) have a complicated
handover decision-making process that has rapidly increased its complexity
[17]. Standard measures like Received Signal Strength (RSS) cannot be used
in areas with a high number of candidate cells that provide a similar quality
of signal [18]. This means that they need to undergo a paradigmatic change
to multi-pollination, reference incredible strategies of handover, and include
parameters like network load balance, application-specific QoS needs, energy
savings, and complex user mobility schedules. The heterogeneous networks
of ultra-dense networks (UDNs) consisting of macro cells, Micro cells and a
diversity of radio access technologies (RATs) highlight the importance of a
seamless vertical and inter-RAT handover [19]. Handover process is a critical
area to ensure that service continuity is guaranteed through the various ele-
ments of the network and also to ensure successive generations of wireless
technology can co-exist of more than one generation of wireless technologies.
The role of efficient management in ultra-dense networks (UDNs) in terms
of the handover process attracts considerable academic interest. The strength
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of the network components and the overall decrease in energy use related to
a limited number of handovers can be consequential. Smart handover plans
that reduce the use of the needless transition and maximize the utilization
of the sleep mode in small cells can contribute significantly to the goals of
green communication in the 6G ecosystem [20]. Also, the role of handover
management is aggravated in UDNs by the diverse and challenging use sce-
narios that are expected in 6G. Figure 2 shown the Handover concept in a
deployed heterogeneous networks with 5G and 6G technology, Ultra-reliable
low-latency communications (URLLC) for mission-critical applications, en-
hanced mobile broadband (eMBB) for high-data-rate services, and massive
machine-type communications (mMTC) for Internet of Things (IoT) scenarios
each present unique challenges and requirements for mobility management,
(HetNet) Multi-tiered network architecture integrating macro and small Cell,
crucial for 6G network densification and spectrum efficiency optimization,
(MIMO)Multi-antenna technology enhancing spectral efficiency and link re-
liability, with massive MIMO systems envisioned for 6G networks, (BER)
Quantitative measure of transmission errors, with ultra-low BER (≤ 10−9)
essential for 6G URLLC applications, (SNR) Ratio of signal power to noi-
se power, critical for achieving terabit-per-second data rates in 6G systems,
(SINR) Extension of SNR incorporating interference, pivotal for handover
optimization in ultra-dense 6G networks, (Seamless Handover) Uninterrupted
service continuity during inter-cell transitions, requiring sub-millisecond laten-
cy and minimal packet loss in 6G, (Mobility) User movement across network
cells, necessitating advanced predictive handovers and trajectory-aware resour-
ce allocation in 6G, (gNB) Evolved base station for 6G networks, supporting
higher frequency bands and advanced features like integrated sensing and
communication [20].

Figure 2. Handover concept in a deployed heterogeneous network with 5G
and 6G technology [21].

In conclusion, handover management in ultra-dense networks plays a funda-
mental role in realizing the full potential of 6G technologies. In 6G networks,
this line of research is particularly important due to the increasing complexity
of security requirements and emerging ethical considerations associated with
intelligent and highly connected systems. Accordingly, the remainder of this
paper is organized as follows. Section 2 presents the related works, providing a
critical synthesis of existing research on handover management in ultra-dense
6G networks and highlighting the limitations that motivate this study. Section
3 discusses the challenges of handover management in ultra-dense 6G envi-
ronments. Section 4 reviews intelligent handover strategies based on artificial
intelligence and machine learning. Section 5 examines emerging technolo-
gies supporting handover optimization, including network slicing and edge
computing. Section 6 outlines performance metrics and evaluation methodolo-
gies, while Section 6 highlights open research challenges and future research
directions. Finally, Section 7 concludes the paper.

2. Related work
Research on handover management in ultra-dense 6G networks has intensi-
fied in response to the rapid densification of access points, the coexistence of
heterogeneous radio access technologies, and increasingly stringent quality-of-
service requirements. Prior studies have proposed a wide range of solutions to
enhance mobility management, encompassing learning-based handover decisi-
on mechanisms, network slicing–aware mobility control, and edge-assisted
architectures designed to reduce latency and improve contextual awareness.

Learning-oriented approaches exploit artificial intelligence and machine lear-
ning techniques to model user mobility and network dynamics, thereby enab-
ling more adaptive and proactive handover decisions. Complementary efforts
have investigated network slicing strategies to preserve service continuity
across heterogeneous applications during mobility events, while edge compu-
ting has been leveraged to support low-latency handover processing through
localized intelligence. Although these directions have reported notable per-
formance gains, they are often examined independently and assessed using
limited evaluation criteria. Furthermore, existing literature provides only limi-
ted insight into cross-layer coordination mechanisms and the broader ethical
and security implications of intelligent handover solutions. Collectively, these
limitations highlight the necessity for a more integrated analytical perspective
that systematically connects emerging technologies with multi-dimensional
performance evaluation and system-level considerations in ultra-dense 6G
environments. Table 1 generalises recent studies on 6G networks, including
the technologies that enable their use, methods of optimising handover, and
new architectures of next-generation wireless systems. It focuses on the new de-
velopments and trends in the application of AI/ML, self-optimising networks,
and integrated terrestrial-non-terrestrial networks as a means of managing
mobility.

• The application of artificial intelligence and machine-learning algo-
rithms, especially in estimating user mobility and handover decision
making. Such important methods are Bayesian-optimised LSTM mo-
dels, XGBoost algorithms, and random forests classifiers that have
shown significant handover performance metrics improvements

• The increasing significance of network slicing and edge computing
in the improvement of handover management. Such technologies will
provide the solution towards resource allocation and latency reduction
in ultra-dense environments.

• The ongoing issues of the heterogeneous network structures, requiring
adaptive and resilient handover policies, which are especially experi-
enced in the scenario of the vehicular networks and UAV communicati-
ons.

• The rise in attention to security and privacy issues in the processes of
handover, such as the elaboration of secure authentication systems and
the investigation of blockchain-based models.

Although Table 2 summarises the current development of handover mana-
gement in ultra-dense and next-generation networks, different strategies are
showcased, such as machine learning, network slicing, and adaptive control
mechanisms. It accentuates the meeting of high technology. computational
techniques and novel network architectures to address complex challenges
in heterogeneous network environments. A substantial body of literature has
investigated learning-based approaches for handover management, where deep
learning models are employed to predict user mobility and network dynamics.
In particular, sequence-learning architectures such as Long Short-Term Memo-
ry (LSTM) and Gated Recurrent Unit (GRU) networks have demonstrated su-
perior capability in capturing temporal mobility patterns, leading to improved
handover prediction accuracy and reduced failure rates compared to conventio-
nal statistical and rule-based methods. Nevertheless, these studies frequently
evaluate predictive performance in isolation, with limited integration into
comprehensive handover optimization frameworks. Reinforcement learning
has also emerged as an effective paradigm for adaptive handover optimization
by enabling autonomous agents to learn mobility policies through continuous
interaction with dynamic network environments. While reinforcement lear-
ning–based solutions offer greater flexibility than heuristic approaches, existing
studies often focus on localized objectives and short-term performance gains,
without fully exploiting synergies with predictive deep learning models or
cross-layer coordination mechanisms. In parallel, privacy-preserving and dis-
tributed learning paradigms, such as federated learning, have been introduced
to support collaborative intelligence while safeguarding user data. Despite
their potential, challenges related to scalability, convergence efficiency, and
coordination between local learning processes and global mobility control
remain open, particularly in ultra-dense network scenarios characterized by
frequent handovers. Overall, prior research largely treats these directions as
independent solution spaces. The lack of an integrated analytical perspective
that jointly considers predictive deep learning, adaptive reinforcement learning,
and privacy-aware collaborative intelligence—along with multi-dimensional
performance evaluation and system-level interactions—limits the ability of
existing approaches to fully address the complexity of handover management
in ultra-dense 6G networks. These observations underscore the need for a
holistic viewpoint that aligns intelligent learning techniques with reliability,
energy efficiency, scalability, and emerging security considerations.
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Table 1. The list of the recent research on 6G networks.

Ref. Year Short Description 6G/ B5G/ 5G Type /HO

[22] 2024

This article explores the evolution from 5G-Advanced to 6G by identifying three new services: immersive com-
munications, everything connected and high-end. The author highlights the progress made in 3GPP releases and
proposes key performance indicators for new services, while describing the enabling technologies and challenges
for the next generation of wireless networks.

✓ ✓

[23] 2024

This paper investigates the possibilities of split federated learning for 6G networks, discusses its advantages regarding
resource efficiency and data privacy while recognizing the challenges of ultra-low latency and high bandwidth
that are unique to 6G, and highlights the processes required to solve those challenges and tap the full potential of
SFL. Proactive handover, is similar to handover, but it predicts when the switch between servers will occur and
makes the switch before the connection degrades; it tries to provide solution for seamless handover, in particular for
high-speed users.

✓ ✓

[24] 2023
This extensive survey examines the enabling technologies, machine learning opportunities, and challenges for 6G
communication networks, and the potential for 6G and beyond. It draws attention to how intelligent algorithms can
lead to substantial improvements in network performance, efficiency, and security.

✓
Horizontal/

Vertical

[25] 2023

The survey provides an extensive overview of handover parameter optimization techniques in the context of self-
optimization in 6G mobile networks, discussing and highlighting trends and research directions for seamless
connectivity and optimal network performance. It was found that new developments in artificial intelligence and
machine learning are vital for self-optimizing handover decisions that behave dynamically and context-aware.

✓
Vertical
Handover
(VHO)

[26] 2023

This survey reports on the problem and problem-solving approach to handover optimization in Beyond 5G networks,
which are identified as the major problem areas: latency, reliability, and the complexity of context, and suggests
approaches to remedy the problem denoted by the application of the most recent methods such as machine learning,
network slicing, and incorporation of complex contextual information into increasingly dense and dynamic network
infrastructure in addition to discussing latest algorithmic methodology.

✓
Soft Handover/
Hard Handover

[27] 2024
The paper is a review of Network Data Analytics Function (NWDAF) utilization in 6G networks to optimize their
resources, security, and privacy, which is able to utilize machine learning and federated learning methods to acquire
and analyze data efficiently to eventually improve the overall network functionality.

✓ ✓

[28] 2024

A new self-optimizing mobility management system, SOMNet, a reinforcement learning-based mobility management
system, improves the resilience and performance of heterogeneous networks that are based on 5G technology,
optimizing the use of handover decisions dynamically. The suggested system is shown to have much more success
in handover, user throughput, and network resilience than the current mobility management schemes, meaning it
will be beneficial in dealing with the complex and dynamic 5G environment challenges as evidenced in Fig. 1

∆
Horizontal /

Vertical

[29] 2024
The suggested mobility-conscious customized handover system has great potential of B5G networks through
predictive modeling and dynamic adaptation to improve the performance of handover, resource utilization, and user
experience compared to traditional methods.

✗ ✓

[12] 2024
The paper presents a handover algorithm of heterogeneous networks which employs Bayesian-optimized LSTM and
multi-attribute decision making to make optimal handover decisions and provide better user experience, leading to
a drastic decrease of handover failure and delay reduction rate of 42.1 and 68, respectively.

✓ ✓

[30] 2024 This paper presents the major technologies such as the improvement of connectivity, AI/ML, and sensing and data
analytics, and the aspect of cybersecurity that will support the creation of 6G-based smart sustainable cities. ✓ ✓

[31] 2024
The article suggests that a blockchain-enabled SDN architecture can improve the performance of handover in
multi-operating mobile network based on the distributed ledger technology to secure, efficient and transparent
coordination between operators.

✓
Soft

Handover

[32] 2024 The paper will provide a unified system of vertical handover in 6G non-terrestrial networks and how to resolve the
issues of continuous connectivity between space and terrestrial networks. ✓

Vertical
Handover

3. Handover challenges in ultra-dense 6G networks
3.1 Legacy handover limitations in 4G/5G networks
In fourth-generation (4G) Long-Term Evolution (LTE) systems, handover sys-
tems have been designed in such a way so as to maintain the constant user
connectivity between cells when traversing cell boundaries. The handover
process ensures that the active connection of the user equipment (UE) is not
interrupted by the service and, therefore, Quality of Service (QoS) is not
disrupted [45]. However, the mechanisms were mainly meant to be used in
macro-cell environments which have relatively low mobility complexity. The
fifth-generation (5G) networks have come with improvements that seek to
accommodate the increased user density and heterogeneous networks. Despite
the fact that handover latency and reliability have been improved, the remai-
ning protocols are still faced with limitations in the ultra-dense deployments,
especially when it comes to supporting diverse service requirements such as en-
hanced mobile broadband (eMBB), ultra-reliable low-latency communications
(URLLC) and massive machine-type communications (mMTC) [46].

3.2 Unique 6G UDN handover demands
The transition to 6G networks will be characterized by an unprecedented incre-
ase in network density, surpassing even the most ambitious 5G deployments.
This ultra-dense network (UDN) environment presents unique challenges and

opportunities for handover management.

3.2.1 Extreme cell densification
The expected 6G infrastructure densification of up to 107 devices per square
kilometer is a significant increase compared to the 106 density of devices
required in 5G [47]. The increase in density of devices is so high that it will
require the creation of new methodologies in cellular planning and optimi-
zation of handovers. In their paper, Maxime Bouton and colleagues (2021)
present a multi-agent reinforcement learning architecture that will be used to
organize handover management among ultra-dense network-based environ-
ments. Their experimental findings prove a 40% on the handover failures and
the network throughput had increased by 25% compared to the traditional
methods [48]. Their main contribution is the contribution of a decentralized
learning paradigm in which every small cell is an independent agent which
collectively optimizes the decision of handover in relation to the local and
shared network state data. Also, Merim Dzaferagic et al. (2024) contribute to
the use of machine learning in predicting handover in an Open Radio Access
Network (O-RAN). Through the use of a Long-Short term Memory (LSTM)
model, the researchers discover that real time network information can be uti-
lized to predict the occurrence of handover events more efficiently and hence
assist in the allocation of resources to the end-users. The results suggest that
implementing the model to either emphasize recall or precision can achieve
significant operational savings of more than 80 of the costs as compared to
traditional sourcing strategies [49].
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Table 2. Shown recent advancements in handover management for ultra-dense and next-generation networks.
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[33]
2024

A Complex Network and Evolutionary
Game Theory Framework for 6G

Function Placement
✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

[13]
2023

Handover Triggering Prediction in
Non-Terrestrial Networks: A Two-Step

XGBoost Ensemble Approach
✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗

[15]
2022

Integration of Network Slicing and
Machine Learning into Edge Networks
for Low-Latency Services in 5G and

beyond Systems

✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

[34]
2023

A Survey on Handover and Mobility
Management in 5G HetNets: Current

State, Challenges, and Future
Directions

✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

[35]
2023

User-centric base station clustering
and resource allocation for cell-edge

users in 6G ultra-dense networks
✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗

[36]
2024

MADM-based network selection and
handover management in
heterogeneous network: A

comprehensive comparative analysis

✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

[37]
2024

Mobility Management in
Heterogeneous Network of Vehicular
Communication With 5G: Current

Status and Future Perspectives

✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

[38]
2024

Analysis of Mobility Robustness
Optimization in Ultra-Dense

Heterogeneous Networks
✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[21]
2024

Adaptive handover control parameters
over voronoi-based 5G networks ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

[39]
2022

Handover management over dual
connectivity in 5G technology with

future ultra-dense mobile
heterogeneous networks: A review

✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[40]
2023

Mitigating Unnecessary Handovers in
Ultra-Dense Networks through

Machine Learning-based Mobility
Prediction

✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗

[41]
2023

AKAASH: A realizable authentication,
key agreement, and secure handover
approach for controller-pilot data link

communications

✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

[42]
2024

Stable matching with evolving
preference for adaptive handover in
cellular-connected UAV networks

✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

[43]
2024

Analytical Model of the Connection
Handoff in 5G Mobile Networks with
Call Admission Control Mechanisms

✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓

[44]
2023

Handoff Scheme for 5G Mobile
Networks Based on Markovian

Queuing model
✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓

where ✓ indicator its worked 6G, and ✗indicator its doesn’t worked 6G.

3.2.2 3D Network topology

The sixth-generation network is a significant departure of the previous archi-
tectures in that it employs an all-encompassing three-dimensional topology
encompassing both terrestrial, aerial, and satellite capabilities. The studies on
three-dimensional network structures under the handover technology provide
plenty of opportunities to develop mobile communication networks, especially
as the transition to (6G) networks occurs. The integration of both terrestrial
and non-terrestrial networks creates a significant complexity in the field of
mobility management and handover optimization, thus creating significant
challenges, but at the same time, it creates tremendous opportunities of inno-
vations. The development of effective handover plans requires complex tools;
the federated learning and computational intelligence approaches will be the
essential tools to reduce the inherent complexity of three-dimensional network

models, at the same time leveraging the capacity of cloud computing. With
the current developments in this field, the consequent findings are set to be
the key in building a coherent three dimensional network, ultimately leading
to the development of a rapidly interconnected global society that would be
able to meet the demands of a global society that is increasingly becoming
interconnected [50].

3.2.3 Nano-Cell Integration
Use of nano-cells with coverage radius of the order of 10-20 m creates signifi-
cant challenges to smooth handover processes in the next 6G networks. Such
nano-cells that could be energized through energy-gathering schemes would
demand the creation of extremely rapid and energy efficient handover proto-
cols. The latest developments in this field are quantum-inspired optimization
methods specific to nano-cell networks, which have achieved sub-milliseconds
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handover latency, but have also consumed as much as 40 per cent less energy
than traditional methods. Based on these innovations, world nano-cells have
been shown to be useful in coordinating handovers of bio-inspired strategies
that mimic collective behaviors in natural systems [51]. The protocols are
incredibly scalable, with handover latency of sub-milliseconds at node den-
sities of 109 cells/km. Furthermore, a combination of energy-harvesting and
handover optimization has made it possible to develop dynamic frameworks,
which respond to the energy status of each nano-cell by altering the handover
parameters dynamically. These energy conscious schemes have demonstrated
the possibility of reducing energy usage by up to 50 percent relative to the
existing handover schemes that remain unchanged in terms of the quality-of-
service. When put together these improvements in nano-cell integration mark
a very important milestone in the achievement of ultra-dense, energy-saving
networks as envisaged by 6G communications [52].

3.3 Ultra-dense network environments
6G paradigm forms a completely different concept for network topology as it
contains an extraordinarily high density of network irregularities and small
cells are referred to in ultra-dense networks (UDNs). An elaborate comple-
xity analysis of the diversity of UDNs and its implications for 6G handover
management are presented in this section.

3.3.1 Theoretical Foundations of UDNs in 6G
Ultra-dense networks (UDNs) as the idea in the setting of the sixth-generation
(6G) mobile systems are rooted in the idea of network densification, which
aims at increasing capacity of the network and boosting spectral efficiency.
Theoretically, stochastic geometry and specifically the Point Process Theo-
ry (PPT) is frequently used to represent UDNs. The base stations (BSs) in
such models are traditionally supposed to have a Poisson point process (PPP)
distribution [53,54]. This modeling model has helped one to derive key perfor-
mance indicators such as coverage probability and the average data rate that
can be achieved in UDNs analytically. However, such high-level densification
as is expected to be achieved in 6G networks presents new problems that lie
beyond the range of traditional theoretical approaches. To illustrate, the PPP
assumption can fail in conditions when the BS deployment has a high level of
spatial correlation or in the case it follows certain geometric patterns. This, in
turn, has created the urgent necessity to build more advanced spatial models
that could reflect the subtle spatial dependencies of 6G UDNs.

3.3.2 Handover Frequency and its Implications
The drastic reduction in cell sizes in UDNs leads to a substantial increase in
handover events, presenting a myriad of challenges:

• Signaling Overhead Analysis: The surge in handover frequency gene-
rates an unprecedented volume of signaling traffic [55]. Quantitatively,
if λ denotes the BS density and v the user velocity, the handover rate
RH O can be approximated as Eq. 1:

λ
0.5 · v ∝ RHO (1)

This relationship indicates that handover rates in 6G UDNs could be
orders of magnitude higher than in current networks, potentially over-
whelming system resources.

• QoE Degradation Metrics: Frequent handovers can lead to intermittent
service disruptions, affecting user Quality of Experience (QoE) [56].
A comprehensive QoE model for 6G UDNs must incorporate factors
such as handover interruption time, probability of handover failure, and
application-specific sensitivity to disruptions [57]. For instance, the
Mean Opinion Score (MOS) for video streaming applications in UDNs
can be expressed as Eq. 2.

MOS = f
(
THO,Pf ail ,Be f f ,L

)
(2)

Where f represents a function that maps the input parameters to the
Mean Opinion Score (MOS), THO is the handover interruption time,
Pf ail is the probability of handover failure, Be f f is the effective band-
width, and L is the end-to-end latency.

• Resource Management Complexity: The rapid transitions between
cells necessitate sophisticated resource allocation algorithms that can
operate on extremely short timescales. Traditional optimization approa-
ches may be insufficient, prompting the need for AI-driven, predictive
resource management techniques that can anticipate user movements
and pre-allocate resources accordingly [58].

• Energy Consumption Models: The energy overhead associated with
frequent handovers can be modeled as follows Eq. 3.

EHO = NHO · (Esig,Eproc,Eexec) (3)

Where NHO is the number of handovers, Esig is the energy consumed in
signaling, Eproc is the processing energy at the network nodes, and Eexec
is the energy consumed during handover execution. In 6G UDNs, this
energy consumption could become a significant portion of the overall
network energy budget, necessitating energy-aware handover protocols
[59].

3.3.3 Interference management in UDNs
The proximity of numerous cells in UDNs exacerbates the challenge of inter-
ference management, with profound implications for handover processes:

• Inter-cell Interference Modeling: In UDNs, the Signal-to-Interference-
plus-Noise Ratio (SINR) becomes predominantly interference-limited.
The SINR can be modeled as Eq. 4.

SINR =
Pr

∑ Ii +No
(4)

Where Pr is the received power from the serving BS, Ii is the interference
from the ith interfering BS, and No is the noise power. In 6G UDNs,
the summation term becomes significantly larger and more dynamic,
complicating handover decisions based on SINR measurements [60].

• Mobility-Induced Interference Variations: User mobility in UDNs
causes rapid fluctuations in interference levels. These variations can
be modeled using stochastic differential equations, incorporating large-
scale and small-scale fading effects [61]. The challenge lies in develo-
ping algorithms that can estimate and predict these rapid interference
changes to inform handover decisions, Considering the user’s location
in time interval t as xD

i (t), yD
i (t), then the location xD

i (t +1), yD
i (t +1)

in interval (t +1) is given by Eq. 5 and Eq. 6.

xD
i (t +1) = xD

i (t)+
(

V D
i

Vmax

)
×Dmax × cos

(
θ

D
i
)

(5)

yD
i (t +1) = yD

i (t)+
(

V D
i

Vmax

)
×Dmax × sin

(
θ

D
i
)

(6)

• Contamination in Massive MIMO UDNs: In massive MIMO systems,
which are expected to be a key component of 6G networks, pilot conta-
mination becomes more severe in UDNs [62]. The channel estimation
error due to pilot contamination can be expressed as Eq. 7.

E
[[∣∣ĥ−h

∣∣]2
]

∝ β (K −1)/M (7)

Where ĥ is the estimated channel, h is the true channel, β is the large-
scale fading coefficient, K is the number of users sharing the same
pilot, and M is the number of antennas. In UDNs, the increase in K
exacerbates this error, affecting handover performance.

• Dynamic Interference Landscape: The activation and deactivation of
cells in response to traffic demands create a highly dynamic interference
environment. This can be modeled as a time-varying graph, where the
edge weights represent interference levels between cells. Developing ad-
aptive interference coordination techniques that can operate in real-time
on this dynamic graph structure is a significant challenge [63].

3.4 Service-Aware Constraints in 6G (eMBB, URLLC, mMTC)
6G networks are expected to support an unprecedented diversity of services,
each with unique performance requirements. This diversity poses significant
challenges for handover management:

3.4.1 URLLC (Ultra-Reliable Low-Latency Communications)
The architecture suggested is a cornerstone of 6G service portfolio, therefore,
creating strict requirements that have a significant impact on the most common
paradigm of handover management. The combination of sub-milliseconds
deadline constraint with almost universal reliability imperatives is also a com-
plicated task that affects the whole of handover design and performance con-
cerns [64]. Therefore, the necessity to provide handovers under the extremely
small latency limits provided by the URLLC services is highly pronounced.
The traditional process of handover that was created to work in situations with
low demand is not suitable in this case. The required latency is usually in the
microsecond range, as compared to the milliseconds range of a conventional
system, and a fundamental redesign of the handover protocols is required. This
change can be realised by creation of innovative and effective signalling provi-
sions, adoption of foresight handover planning and reduction of processing
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delays [65]. Approximate handover methodologies can be taken as a viable
option in solving the delay and reliability problems. In particular, where han-
dover events are predictable with a high level of sophistication, using dynamic
pattern analysis, evaluation of network state and application requirement, the
handover processing can be enabled to be constantly activated in an active
way [66]. Even though this model can be used to a significant effect, it has
created further complexity within the system. In service perspective, prediction
models should be decoded with extreme accuracy; a false positive will lead to
unnecessary handovers and needless utilization of network resources, a false
negative may lead to service interruption. In addition, the resource reservation
schemes that enable predictive handovers should be carefully optimized so
as to maintain efficiency of the entire network [66]. The high level of compu-
tation is essential in the development of predictive handover algorithms that
have the ability to make informed decisions in complex and high-dimensional
environments. At the same time, the SDN and NFV technologies enable the
programmability and flexibility needed to ensure that the response to service
demands is dynamically implemented and that the processes of handover are
carried out in time and service-aware ways. Also, network slicing provides an
option of resource and performance reserve of URLLC services at handover
borders, though it has difficulties with ultra-dense network deployments [67].
Lastly, handover management is a poorly explored but substantial area of rese-
arch; therefore, the solution based on machine learning could be beneficial,
considering the nature of URLLC services in 6G networks.

3.4.2 MMTC (Massive Machine-Type Communications)
Massive Machine-Type Communications (mMTC) in the 6G networks is a
paradigm shift in connectivity, where there is a massive scale of proliferation
of devices. This situation presents a complex set of problems in the field of
handover management, all of which require innovative solutions to maintain a
smooth functioning of the complex ecosystem of 6G networks. Scalability is
one of the major issues of the mMTC handover management. The fact that the
number of interconnected devices can be in the millions per square kilometer
makes it mandatory to reconsider the handover protocols and network archi-
tectures in a fundamental way [68,69]. Conventional handover procedures that
were developed towards humanistic communications do not suffice to handle
the enormous signaling overhead of the mMTC devices. To deal with this,
recent studies consider hierarchical and distributed handover management mo-
dels that have the ability to scale up to large levels of handovers. Cluster-based
schemes of handover which combine handover requests issued by proxima-
te devices have demonstrated potential in dramatically decreasing signaling
overhead. The key question in designing handovers to massive Machine-Type
Communications networks is energy efficiency, mostly due to the fact that most
mMTC equipment operates on small battery power. Handover mechanisms
should use little power in order to prolong the life of the devices. Recent studies
have researched the context-aware strategies that reduce needless handovers
and time them based on the amount of energy a particular device has left. An ef-
fective solution is to carry out handovers once the devices awaken in their usual
schedules and hence preserve the connection without wasting unnecessary
battery energy [70]. The varying mobility patterns in mMTC networks do not
make it easy to come up with dependable handover mechanisms. The networks
must have the ability to provide versatile policies that serve the different types
of devices, like stationary sensors and IoT devices with high velocities, as well
as serve their traffic demands. It has been shown that handover strategies can be
adjusted in line with device characteristics and movement patterns to increase
the reliability and network performance in mixed deployment environments
significantly [71]. Edge computing has become a key enabling technology of
distributed handover management in mMTC systems. The networks enable
the location of decision-making and coordination to edge nodes, which hel-
ps to decrease latencies and also enhance scalability. Edge based handover
models have shown a substantial decrease in signaling overhead and delay on
handover compared to conventional handover models that are centralized. The
architecture presented in Fig. 3 indicates the importance of edge capabilities in
the development of wireless communication systems in the next generation as
development in this area continues. This integration lays the basis of adaptive
and self-optimizing handover mechanisms that can dynamically react to the
changing network conditions and behavior of devices [72].

3.4.3 eMBB (Enhanced Mobile Broadband)
The processing of handovers of Enhanced Mobile Broadband (eMBB) ser-
vices (data rates are high, and connectivity is a priority) in the environment of
ultra-dense, heterogeneous 6G deployments is associated with a complex of
non-trivial issues. Such environments simultaneously give rise to idiosyncratic
complexities, which dictates a fundamental change in the design of handover,
and the overall aim of maintaining the best system performance and at the same

time ensuring the user satisfaction as pointed out recently in literature [73]. Out
of the numerous aspects that should be given serious attention, maintenance of
bandwidth continuity is the dominant aspect in the process of eMBB handover
control. In such 6G super-dense settings, the distribution of bandwidth across
handover events will be significantly complicated due to the presence of cells
with different capacities and operational functions. As users traverse multiple
network layers, both the natural differences in cell operation itself, and the extre-
mely dynamic nature of traffic that defines a contemporary wireless ecosystem,
make the operation of the ecologies more complex. One avenue that promises
to help curb such challenges is the implementation of adaptive bandwidth
allocation systems to work at two levels of hierarchy. Such mechanisms make
it possible to initiate the process of handover pre-emptively by considering
the capacity that is available in the target and the source cells. As such, early
preparation of the target cell allows the user sessions to maintain continuity,
which prevents significant degradation of the rates of data transmission. These
issues will be critical in developing handover systems that are efficient and
sustainable and can meet the high requirements of 6G networks in the future
[74]. Using past data and real-time analytics, AI-oriented handover systems
can take predictive choices to streamline the performance and resource usage.
The adoption of such systems, however, brings about doubts on handover.

Figure 3. A proposed architecture for next-generation wireless communication
[72].

4. Intelligent handover strategies in 6G UDNs: AI and Ma-
chine Learning approach

4.1 Machine learning-based approaches
Machine learning (ML) has emerged as a transformational pressure in handover
optimization for 6G networks, providing sophisticated response to deal with the
complexity and dynamics contained in ultra-dense community environments.
This section makes a deep discovery of supervised learning for the predicti-
on of handover, strengthening of decision adaptation, and learning to learn
unsupervised for pattern recognition in terms of 6G handover management
[75, 76].

4.1.1 Supervised learning for handover prediction
Supervised learning algorithms have demonstrated remarkable efficacy in pre-
dicting handover events and optimizing handover parameters in 6G networks.
These approaches leverage historical data to train models that can forecast
future handover requirements with high accuracy [76]. In the case of interacti-
ve applications (augmented reality, virtual reality, and others), the quality of
user experience directly depends on the handover process. Such services are
very sensitive to any change in latency or decrease in throughput resulting in
the need of not only constant data rates but also strict latency and reliability
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guarantees. To achieve such needs, network-level performance measurements
should be integrated with application-specific quality measurements to mobili-
ty management procedures. The combination of the frameworks of perceptual
quality evaluation would also allow researchers to determine the influence of
temporary service interruption on the user experience and user satisfaction and
thus refine the decisions on handover. Network designers in eMBB situations
face a two-fold challenge where they have to maintain the continuity of mobi-
lity and simultaneously maintain high throughput. The balancing process is
especially complicated in modern 6G settings, whereby the boundaries of cells
change dynamically and the mobility of the users is not as predictable as it
was in the previous generations. Recent works focus on adaptive optimization
techniques that can be used to adjust the parameters of handover on-the-fly.
These methods should combine various parameters and this incorporates signal
strength, network load, mobility pattern, quality of service (QoS) parameters
and the needs of the applications in operation [77]. The decision needs to
be made in time and the delays in adapting to the changes can directly affect
the continuity of service. Nevertheless, there are a number of problems that
have not been solved. The issues of computational overhead, scalability in
ultra-dense deployments as well as user privacy protection remain as a major
challenge.

4.1.1.1 Deep neural networks for multi-dimensional feature processing
Advanced neural network architectures, such as Convolutional Neural Net-
works (CNNs) and Graph Neural Networks (GNNs), have shown promising
results in processing complex, multi-dimensional input data relevant to hando-
ver decisions. CNNs are particularly effective in capturing spatial correlations
in network topology and signal strength maps, while GNNs excel at modeling
the intricate relationships between network entities [78].

4.1.1.2 Transfer learning for adaptive handover models
Transfer learning techniques have been investigated to address the challenge of
limited training data in new network deployments. By leveraging pre-trained
models from similar network environments, transfer learning enables rapid
adaptation to new scenarios while minimizing the need for extensive data
collection [79]. The transfer learning process can be formalized as Eq. 8.

LT (θ) = LS(θ)+λ .LT (θ) (8)

Where LT (θ) is the loss function for the target domain, LS(θ) is the loss function
for the source domain, λ is a hyperparameter controlling the trade-off between
source and target domain performance. This approach has shown significant
potential in improving handover performance in newly deployed 6G network
segments, where historical data may be limited.

4.1.2 Reinforcement Learning for decision optimization
Reinforcement learning (RL) represents a strong methodology framework to
optimize the handover policies in a dynamic operational environment of 6G
environments. The RL agents can learn new strategies of handover that are
better than the traditional approaches that rely on heuristic learning through
environmental interaction [80].

• Multi- Agent reinforcement learning to coordinate handover.
Multi-agent reinforcement learning (MARL) has become an encoura-
ging approach to organizing handover decisions among a set of base
stations in ultra-dense 6G networks. MARL allows base stations to
evolve cooperative policies that adjust to the overall network perfor-
mance in response to the local conditions [81,82]. The empirical data
shows that the MARL system helps to contribute significantly to the
decrease in handoff failures and ping-pong scenarios in highly dense 6G
deployments by enabling the coordination of decisions of neighbouring
base stations.

• Efficient Exploration with Model-Based Reinforcement Learning.
Model based reinforcement learning combines network simulation mo-
dels to hasten the learning process and improve the efficiency of the
samples. Such an approach is especially beneficial in 6G networks in
which real-world data is costly and time-consuming to acquire [83, 84].
The model based RL process may be described as Eq. 9.

V π ·S = Eπ

[
∑γ

t · rt |So = S
]

(9)

Where V π(s) is the value function under policy π , γ is the discount
factor, rt is the reward at time t. By leveraging accurate network mo-
dels, model-based RL can explore a wide range of handover strategies
efficiently, leading to faster convergence and more robust policies.

4.1.3 Unsupervised learning for pattern recognition
Unsupervised learning techniques play a crucial role in discovering latent
patterns and structures in handover-related data, enabling more efficient and
adaptive handover strategies in 6G networks [85].

4.1.3.1 Clustering for user mobility pattern analysis

Advanced clustering algorithms, such as DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) and OPTICS (Ordering Points To Iden-
tify the Clustering Structure), have been employed to identify complex user
mobility patterns in 6G environments [86]. The DBSCAN algorithm can be
formalized as Eq. 10.

Nε(p) = {q ∈ D | dist(p,q)≤ ε} (10)

Where Nε(p) is the ε-neighborhood of point p, D is the dataset, dist(p,q)
is the distance function. These clustering techniques enable the discovery
of irregular-shaped mobility patterns, facilitating the development of more
adaptive and efficient handover strategies tailored to specific user behaviors.

4.1.3.2 Dimensionality reduction for feature extraction

Dimensionality reduction techniques, such as t-SNE (t-Distributed Stocha-
stic Neighbor Embedding) and UMAP (Uniform Manifold Approximation
and Projection), have been utilized to extract meaningful features from high-
dimensional handover data [86]. The t-SNE algorithm minimizes the Kullback-
Leibler divergence between the joint probabilities of the high-dimensional
space and the low-dimensional space Eq. 11.

KL(P||Q) = ∑
i

∑
j

pi j · log
{

pi j

qi j

}
(11)

Where pi j is the similarity between points i and j in the high-dimensional
space, qi j is the similarity between points i and j in the low-dimensional space.
In conclusion, machine learning-based strategies provide powerful tools for
addressing the complicated, demanding situations of handover control in 6G
networks. The synergistic software of supervised, reinforcement, and unsu-
pervised mastering techniques permits the improvement of shrewd, adaptive,
and green handover techniques able to assemble the diverse and stringent
requirements of next-generation wireless systems [87].

4.2 Network slicing-aware handover strategies
Network slicing is a cornerstone technology in 6G systems, as it allows the
establishment of multiple virtual networks customized to meet diverse service
requirements. Within this paradigm, handover mechanisms must be explicit-
ly slice-aware to ensure that the integrity and performance of each slice are
preserved during mobility events. As observed in the previous section, net-
work slicing is a significant element that permits heterogeneous Internet of
Things (IoT) applications in 5G and future beyond-generation networks [88].
This finding implies the need to create comprehensive models that have the
capacity to mitigate the two interconnected issues of resource distribution
and optimization of the quality of the services offered, thus supporting the
implementation of smart services in the future network infrastructures. In
this regard, the design of slice-aware handover mechanism requires taking
into account two dimensions, i.e., the development of slice-centric handover
policies and the successful operation of inter-slice transitions.

4.2.1 Slice-Specific policies of handover
The slice-specific handover policies are supposed to support a wide range of
mobility requirements and issues in different network slices. These policies
are supposed to maximise the handover strategies but maintain the distinctive
features of every slice. The perfecting of these guidelines is premised on a
number of important factors:

• Slice Priority: The handover decisions are given to high-priority slices
with the preference on slices related to the Ultra-Reliable Low-Latency
Communication (URLLC) services.

• Slice Isolation: The policy focuses on guaranteeing that individual sli-
ces have comprehensive performance assurances during the events of
handover.

• Slice Elasticity: The dynamically adjustable handover thresholds are
mainly based on the modern load and capacity characteristics of each
slice, which are considered as independent entities [89].
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4.2.1.1 Mathematical formulation of slice-specific handover decision
Let S = S1,S2, ...,Sn denote the set of network slices. For each slice Si, we
define a utility function Ui(h) that quantifies the benefit of a handover decision
h. The overall network utility U(h) is then expressed as, Eq. 12.

U(h) = ∑
i

wi ·Ui(h) (12)

Where Wi represents the weight (priority) of slice Si. The handover decision
problem can be formulated as an optimization problem Eq. 13.

max U(h)S · t ·Ci(h)≤ Ti,∀I (13)

where Ci(h) represents the cost of handover for slice Si, and Ti is the threshold
for acceptable handover cost. In this formulation, the S = S1,S2, ...,Sn repres-
ents the complete set of network slices, where S1,S2, ...,Wn are individual
network slices and n is the total number of slices. Ui(h) is the utility function
for slice i, where h represents a handover decision and Ui(h) quantifies the
benefit of handover decision h for slice i. The U(h) represents the overall net-
work utility for handover decision h, and Wi is the weight (priority) assigned to
slice i. The max U(h) indicates the objective to maximize the overall network
utility U(h). The s.t.Ci(h)≤ Ti,∀i specifies the constraints, where Ci(h) is the
cost of handover for slice i, Ti is the threshold (maximum acceptable cost) for
slice i, and ∀i mean ”for all i”(i.e., this constraint applies to all slices).
4.2.1.2 Multi-objective optimization
To address the often-conflicting requirements of different slices, multi-objective
evolutionary algorithms are employed. These algorithms aim to find Pareto-
optimal solutions that maximize overall network utility while respecting the
constraints of individual slices [90]. The multi-objective optimization problem
can be formulated as Eq. 14.

max
[
U1(h),U2(h), ...,Un(h)

]
S · t ·Ci(h)≤ Ti,∀I (14)

This formulation allows for the consideration of slice-specific utilities simulta-
neously, leading to more balanced handover decisions.
4.2.1.3 Machine Learning Approach
Multi-task learning frameworks are being developed to simultaneously opti-
mize handover parameters for multiple slices [91]. The general form of the
multi-task learning objective can be expressed as Eq. 15.

min L = ∑
i

λi ·Li
(
θ

0,θi
)
+R

(
θ

0,θ1, ...,θn
)

(15)

Where L is the loss function for slice si, θo represents shared parameters, θi
represents slice-specific parameters, λi is the weight for slice Si, and R is a
regularization term.

4.2.2 Inter-slice handover managements
Inter-slice handover management is relevant to situations that are complex,
and users or devices have to be moved through different network slices. This
is done in the following important elements:

• Slice Selection: Selecting the service slice using the best target sli-
ce that is determined using service requirements and current network
conditions.

• Resource Orchestration: This is the process of coordinating the pro-
cess of allocating and de-allocating resources across network slices in
handover.

• State Transfer: The transparency in transferring user context and session
information across slices as reported in [92], is a basic component in
maintaining session integrity within distributed system slices.

4.2.2.1 Graph-based optimization for inter-slice handover
Graph-based optimisation methods represent the complex interconnections
between distant slices and attempt to determine the best paths of inter-slice
handovers [93]. Suppose a graph, G(V,E), where V is a set of slices, and E
is a set of possible transitions between the slices. For each edge e ∈ E, we
define a cost function c(e) that incorporates factors such as slice compatibility,
resource availability, and transition costs. As a result, the inter-slice handover
issue can be formulated as the problem of searching for the shortest path in G
between the current slice and the target slice. The objective function to this
optimisation problem is Eq. 16.

min ∑
e

c(e) · x(e)S · t ·
+

∑
e

x(e)−
−

∑
e

x(e) = b(v),∀v ∈V x(e) ∈ {0,1},∀e ∈ E

(16)

Where x(e) is a binary variable indicating whether edge e is in the path, and
b(v) is 1 for the source slice, −1 for the target slice, and 0 for all other slices.

4.2.2.2 Predictive Analytics for Proactive Inter-slice Handover
Predictive analytics models are developed to anticipate future inter-slice hando-
ver requirements. These models typically use time series forecasting techniques
to predict future network conditions and user mobility patterns [94]. Let Ŷ (t)
be the vector of relevant network and user metrics at time t. The prediction
problem can be formulated as Eq. 17.

Ŷ · (t + k) = f · (Y (y),Y (t −1), ...,Y (t − p)) (17)

Where f is the prediction function (e.g., ARIMA, LSTM), and k is the pre-
diction horizon, p determines the ’memory’ of the model, i.e., how far back
in time the model looks when making a prediction. Based on these predicti-
ons, proactive resource reservation and state preparation can be initiated to
minimize disruption during inter-slice transitions.

4.3 SDN and NFV-based handover frameworks
Software-defined Networking (SDN) and Network Function Virtualization
(NFV) technologies are positioned to fundamentally transform handover ma-
nagement in 6G networks by providing unprecedented levels of flexibility,
programmability, and adaptability [95]. These technologies form the foun-
dational architecture of advanced handover frameworks capable of meeting
the diverse and demanding requirements of ultra-dense, heterogeneous 6G
network environments [96].

4.3.1 SDN-based handover control
Software-Defined Networking (SDN) stands out as a radical innovation in
network management, as it grants a high degree of flexibility and program-
mability to modern network communication systems. Handover management
with SDN in 6G networks is one of the important methodological improve-
ments to overcome the complexity of mobility in ultra-dense, heterogeneous
network topologies [97]. The methodology being proposed takes the form
of a centralized network approach and a manageable architectural design to
improve the decision-making procedures in the handover processes in the net-
work infrastructure, which in turn supplies an integrated approach to mobility
control.
4.3.1.1 Advanced SDN controller architectures
To overcome the special requirements of 6G networks, new SDN controller
architecture designs have been proposed, with hierarchical and distributed
designs [98]. These architectures aim to balance the benefits of centralized
control with the need for low-latency, local decision-making in ultra-dense 6G
environments. As shown in Fig. 4, it includes This hierarchical architecture
consists of :

• Global SDN Controller: It deals with optimization of the network and
policy specifications across the network.

• Regional Controllers: Handle coordination within larger network seg-
ments.

• Edge Controllers: Manage time-sensitive operations and local handover
decisions. This multi-tiered approach allows for:

• Scalability: The hierarchical design is able to scale effectively to the
large amount of network components in 6G systems.

• Low Latency: Edge controllers are able to make fast decision on time
sensitive handovers.

• Global Optimization: Global controller has a long-term network-widely
view of optimization.

Figure 4. Hierarchical SDN controller architecture optimizing global and local
handover decisions in 6G networks [99].
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4.3.2 NFV-enabled mobility management in 6G networks: advancing fle-
xibility and scalability
The network paradigm of virtualizing sixth-generation (6G) communication
systems is one of the key enablers of increased flexibility and dynamism in
the telecommunications sector. This sub-section provides a comprehensive
literature review of the current studies that relate to NFV-assisted mobility
management, explaining how it can ease the variety of multifaceted problems
that engulf the future of wireless communications [100]. Additionally, it also
provides an architectural comparison of the handover strategies used in 6G
networks at the high level.

4.3.2.1 Virtual mobility anchors

The virtual mobility anchoring concept signifies a monumental paradigm shift
as far as the architectural and implementation paradigms of mobility manage-
ment is concerned. The traditional system designs use the static anchor points,
here, virtualized anchor points have the capacity to be moved, and configured
on-demand hence improving the performance of handover in various network
topologies. The empirical studies have proven that the implementation of vir-
tual mobility anchors creates the tremendous decreases in handover latency
and mitigates the signaling overhead [101]. The ability to rearrange such an-
chors according to the current network conditions and mobility patterns of
users makes them especially beneficial to ultra-dense 6G deployments, where
ensuring continuous connectivity is an extremely challenging issue.

4.3.2.2 Service function chaining for handover workflows

Service Function Chaining (SFC) incorporated into the mobile network ma-
nagement provides a lot of flexibility in design and therefore, it is possible to
come up with elaborate handover schemes. Mobility-management tasks within
this framework are further broken down into modular functions which may be
assigned to homogeneous topologies under the control of operators who can
customize a handover process to meet service demands or a current network
environment. Recent academic research studies have explored the integration
of intent-based networking frameworks to independently synchronize these
functional chains and thus cause a radical change in the dynamic nature of 6G
mobility-management with the aspects of elasticity and flexibility [102].

4.3.2.3 Stateless mobility management

Stateless mobility management is based on the modern cloud realities para-
digms and represents an alternative paradigm in the administration of mo-
bility state information. On this scheme, distributed data repositories and
microservice frameworks are used to maintain mobility state data in indepen-
dence of individual network elements creating better scalability and resilience.
Empirical results indicate that stateless mobility management structures can
significantly reduce the handover preparation times, and, at the same time,
increase system reliability in the high-mobility conditions envisaged by future
6G implementations [103].

5. Emerging technologies for 6G handover optimization
The increased use of ultra-dense networks of 6G technology puts new obstacles
to ensuring continuous connectivity and sufficient quality of service (QoS),
especially in environments with high-mobility and in a multi-network slice
environment. In this sub section, the analysis of modern technologies that are
likely to revolutionize the handover process in 6G scenarios is conducted in
a strict manner. Such novel solutions have to deal with the demanding need
to process challenging multidimensional contextual information swiftly to
support proactive efficient handovers [104].

5.1 Artificial intelligence and machine learning applications
Artificial Intelligence (AI) and Machine Learning (ML) are capable of enabling
shrewd, context-aware handover control in 6G networks. These technologies
provide extraordinary skills in processing and leveraging complicated fact
styles to make speedy, optimal handover decisions.

5.1.1 Deep learning for complex pattern recognition
The creation of ultra-dense 6G networks requires processes of high quality in
terms of handover control. It has been shown that deep learning strategies pos-
sess significant ability to discover and comprehend the complicated patterns
of the multi dimensional feature spaces within these networks.

Figure 5. Federated Learning process to handover management in 6G networks
[105].

Fig. 5 federated Learning process to handover management in 6G networks
[105]. The ability of deep neural networks to automatically derive the hier-
archical representational features of raw information makes them especially
more qualified to the heterogeneous and dynamic nature of 6G environments
[106].

5.1.2 Federated learning for distributed handover management
In the new field of 6G networks, where deployments are extremely dense and
the architecture is heterogeneous, traditional centralized methods of handover
management are faced with serious scalability and privacy limitations. Federa-
ted Learning (FL) has emerged as an essential technological concept that can
overcome such issues; it enables optimization of handover collaboratively bet-
ween various network components without the need to lose the confidentiality
of data as well as reducing the overhead on communication.

5.1.2.1 Principles of federated learning in 6G handover management
Federated learning allows training a global model with the collaboration of
multiple edge devices or base stations without exposing the data to privacy
issues as it does not require the transmission of raw data. This approach can
also be applied in the context of 6G handover management to create power-
ful handover models that are sensitive to the local network conditions, thus
providing the network as a whole with the ability to access aggregated cross-
knowledge [107]. The steps involved in the federated learning process are
normally divided into the following steps:

• Local Model Training: Every network entity (e.g. base stations, edge ser-
vers) that partakes in the training trains a local model based on its own
locally stored information, and this can include user mobility patterns,
signal-strength measurements, and previous performance of handover.

• Local Model Training: Base stations and edge servers (each a network
entity) train a local model on their own proprietary data, which could
constitute user mobility patterns, signal strength measurements, and
past handover performance.

• Model Aggregation Worldwide: When the updates obtained are centrali-
zed by the central aggregator, they refine the global model, and FedAvg
or more advanced aggregation algorithms are commonly used [108].

• Model Distribution: The revised international model is then shared with
the involved entities so as to be incorporated into the local handover
decision-making processes [105]. Figure 5 demonstrates the federated
learning procedure to the handover management in 6G networks.

5.1.2.2 Advanced Federated Learning Techniques for 6G Handover Manage-
ment

Some of the developed federated learning (FL) methods have potential to
improve handover management of 6G networks.

• Hierarchical Federated Learning also adds several layers of aggregation,
such as local clusters, regional aggregators, and a global coordinator,
thus allowing to share knowledge more efficiently across different do-
mains of the network.

• Personalized Federated Learning enables building models for a par-
ticular network segment or slice and at the same time utilizes global
knowledge [109]. This strategy is especially handy in 6G handover
management, when the handover approach is being tailored to specific
types of services or groups of users.
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• Transfer Federated learning: may also be used with FL, resulting in
Federated Transfer Learning, which enables information obtained in
network segments with a large amount of data to be transferred to those
where there is limited data, thereby enhancing handover performance
[110].

• Asynchronous Federated Learning: also allows network actors to par-
ticipate in the FL process without being too synchronous, which is
particularly appropriate in dynamic 6G settings where nodes can join
and leave the network very often [111].

5.1.3 Transfer Learning for Cross-Domain Knowledge Utilization
Transfer Learning (TL) emerges as a pivotal technique in the realm of 6G
handover optimization, offering a sophisticated approach to leverage knowled-
ge gained from one network domain or scenario to enhance performance in
another [112]. This methodology is particularly crucial in the context of 6G
networks, characterized by their heterogeneous nature, encompassing diverse
network slices and a wide array of use cases.

5.2 Predictive analytics for proactive handover
Predictive analysis tools form a basic aspect of promoting proactive handover
management in the new generations of wireless network. The future analy-
sis processes will be able to predict network conditions and user behavior
based on historical real-time measurements and the latest machine-learning
technologies. It is a paradigm shift in the reactive network governance to
proactive network governance which is expected to improve spontaneous user
connectedness, and the optimization of the whole network functioning [113].

5.2.1 User Mobility Prediction
One of the main elements of proactive handover management is user mobili-
ty prediction. Recent mobility prediction algorithms are based on advanced
machine-learned algorithms to predict user paths with excellent accuracy. The-
se are models that include historical movement patterns, current velocity and
heading, landscape features, like roads and building patterns, time and even
social information, thus, they include all the numerous variables that affect a
crowd movement [114]. Various prediction methods can be observed in user
dynamics methodology. Other models like Markov chains have been shown to
be useful in describing transitions between states in user movement, and can
therefore be used in providing a firm foundation to predict future positions
[115]. State-estimation techniques such as Kalman filters provide an effecti-
ve model to predict user location within the noisy measurement information
especially when the networks envisioned for 6G communications [116]. The
Kalman filter estimation can be represented as Eq. 18.

x̂k = Fk x̂(k−1)+Kk
(
zk −HkFk x̂(k−1)

)
(18)

Where x̂k is the estimated state, Fk is the state transition model, Kk is the
Kalman gain, zk is the measurement, and Hk is the observation model. For
scenarios involving non-linear and non-Gaussian estimations of user trajecto-
ries, advanced filtering techniques such as particle filters have demonstrated
notable success. Deep learning approaches have shown remarkable capability
in learning complex temporal patterns in user mobility. Long Short-Term Me-
mory (LSTM) networks, in particular, can capture long-term dependencies in
movement data. The output ht of an LSTM cell at time t can be computed as
Eq. 19.

ht = Ot ⊙ tanh(Ct) (19)

Where Ot is the output gate, and Ct is the cell state, and ⊙ is the Hadamard
product used to element-wise multiply the output gate (Ot ) with the hyperbolic
tangent of the cell state (tanh(ct)). In addition, graph-based neural network
models have also become a powerful tool to implement spatial relationships
and network structure in mobility prediction networks, therefore, offering a
more holistic viewpoint to user paths in the context of the structural map of
the network [117].

5.2.2 QoS/QoE prediction models
The third pillar for future research on active handover management is the
prediction of Quality of Service (QoS) and Quality of Experience (QoE). The
main purpose of such predictive models is to forecast the quality of service
that is required after the handover implementation. This expectation is linked
to a set of factors, and they are expected network conditions after handover,
the peculiarities of the applications, preferences of individuals, and the techni-
cal capacity of user equipment [118]. The advent of 6G networks has made
Quality of Service (QoS) and Quality of Experience (QoE) even more difficult
to predict. The complexity of such networks is due to two main aspects: the

high level of heterogeneity of services that these networks need to support,
and the dynamic nature of network conditions. It is important to note that,
recognizing the limitations of conventional approaches to measurement, the
academic community has resorted to the use of data-driven approaches. The-
se modern methods have a higher capabilities of modelling the subtle and
multidimensional interdependences between objective measures of perfor-
mance and subjective experience of the users. One of the largest groups of
modern literature focuses on the study of neural network structures to predict
Quality of Service (QoS) and Quality of Experience (QoE). These models
have demonstrated a strong potential, and in particular in dealing with the
nonlinear properties, which dominates the relationship between network-level
parameters and the perceived quality by the user. Empirical studies have con-
firmed that multilayer neural structures can accurately model the complex
interdependences between physical network measures with consumer quality
indicators [119]. Convolutional neural networks (CNNs) have been found to be
quite useful in this area, identifying spatial patterns in the quality of services
that are often lost in aggregate measures. These spatial relationships allow
the CNN-based procedure to have a deeper insight into the quality difference
in different network locations. [120, 121]. A deep neural network for QoE
prediction can be represented as Eq. 20.

QoE = σ (Whσ (...σ (W2σ (W1x+b1)+b2) ...)+bn) (20)

Where σ is the activation function, Wi are weight matrices, bi are bias vectors,
and x is the input feature vector. As a complement to these methods, reinforce-
ment learning (RL) methods have acquired growing academic interest. Unlike
the very traditional prediction systems, the RL systems can also be modified
with time, incorporating real user feedback, thus increasing their accuracy as
the network conditions and the expectations of the users change [122]. This
flexibility presupposes special importance in 6G cases when service needs
and network conditions demonstrate high dynamism. It is a style that makes
use of probabilistic graphical models that furnish an organized display of
conditional connections between network performance indicators, application
behaviour, and the level of user satisfaction [123]. The fact that these models
conceptualize QoE as a probabilistic interaction as opposed to a fixed metric
provides researchers and operators with an opportunity to look at performance
through many different lenses. QoE can be measured simultaneously using per-
spectives of end users, service providers and network operators as depicted in
Fig. 6. Another significant implication of the accurate prediction of QoS/QoE
is the possibility to implement individualized mobility and handover plans.
User-preferred network overlay and historical QoE information can be used
to adapt mobility decisions in accordance with the individual usage patterns
to recognize the fact that to different users and applications, the subjective
experience is significantly different. This customization is an essential move
towards user-centric mobility management in the future intelligent network
systems [124,125].

Figure 6. QoE management from three perspectives: end-user, service provi-
der, and network operator [123].

6. Performance metrics and evaluation methodologies for
6G handover management

The emergence of the ultra-dense 6G network introduces unprecedented chal-
lenges in handover management evaluation, requiring a paradigm change in
performance evaluation methods. This section presents a systematic struc-
ture incorporating state-of-the-art experimental platforms to validate advan-
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ced matrix, quantum-comprehensive simulation environments, and the next-
generation handover system.

6.1 Key Performance Indicators (KPIs) for 6G handovers
The multifaceted nature of 6G handover processes necessitates a sophisticated
framework of Key Performance Indicators (KPIs) that transcends traditio-
nal evaluation metrics. This section presents a comprehensive analysis of
interconnected performance metrics, establishing theoretical foundations and
examining their collective impact on system performance in ultra-dense 6G
deployments [126]. The fundamental performance metrics in 6G handover
scenarios can be expressed through a unified theoretical framework Eq. 21.

P(H) = f (L,R,S,E) (21)

Where P(H) represents overall handover performance, L denotes latency com-
ponents, R encompasses reliability measures, S represents scalability factors,
and E captures energy efficiency metrics. This interdependent relationship
establishes the basis for comprehensive handover evaluation in ultra-dense
networks.

6.1.1 Multi-Dimensional Latency Metrics
The handover delays are considered the crucial component of the 6G networks
that have a direct effect on the user experience and continuity of the sessi-
on; therefore, they affect a wide range of applications, such as holographic
communications and autonomous systems [127].

• Total Holistic Handover Execution Time (HHET): According to the
definition, HHET shows the total time frame of the entire process of
handover including the initialisation and any changes that might take
place during the network state [128]. The measure has a complete ti-
me profile that is required in ultra-latency applications of 6G. It also
includes factors of signalling overhead, resource-allocation delay, and
certification procedures, hence allowing the determination of the exact
source of delays in handover process Eq. 22.

HHET =
∫ [

totot f
]

f (t,ω)dt (22)

Where f (t,ω) represents the time-varying handover process, incorpo-
rating network state ω , from initiation (t0) to completion (t f ).

• Predictive Latency Optimization Factor (PLOF) is a metric of artificial
intelligence that measures the effectiveness of future handover plans.
PLOF makes clear the benefits of having complex predictive algorithms
by comparing the delay that is expected in handovers to the baseline
reactive strategies [129]. The measure is especially relevant in the eva-
luation of learning-based handover programs that have the capacity
to predict both user and network behavior so as to facilitate proactive
handovers Eq. 23.

PLOF =
Tbaseline −Tpredictive

Tbaseline
(23)

This metric quantifies the efficacy of AI-driven predictive handover
mechanisms, where Tbaseline and Tpredictive denote conventional and
predictive handover durations, respectively.

• Cross- layer Handover Latency (CHL): This model of generalized ana-
lysis is used to measure the latency of a network along with multiple
abstraction layers. This measure is needed in 6G networks, in which
cross-layer optimization is critical in realizing ultra-low latency. The
Cross-layer Handover (CHL) model defines delays at the physical layer,
e.g. beam-alignment in millimetre-wave systems, at the MAC layer, e.g.
contention-resolution protocols, at the network layer, e.g. IP address
re-assignment, and at the application layer, e.g. session initiation [129].
Additionally, it explicates the latency and reliability demand of various
URLLC services Eq. 24.

CHL =
n

∑
i=1

αi ·Li (24)

Where Li represents latency components across n network layers, and
αi are corresponding weighting factors.

• Contextual Handover Latency Variation (CHLV): is used to measure the
variation of handover delay with change of different network contexts
such as user mobility patterns, spatial changes in cellular density and
traffic-load conditions (see references [130,131]). This measure helps
to evaluate the consistency and predictability of handover performan-
ce within an array of likely 6G conditions and in this way secure the
continuation of the quality of service at a consistent level.

Figure 7. Small Cell deployment [132].

7. Open Research Challenges and Future Directions
The shift towards 6G networks introduces new issues in handover manage-
ment, requiring a complete overhaul of current systems and novel approaches
to solutions. This section provides of the major obstacles in performing appro-
priate research on ultra-dense 6G networks while simultaneously addressing
the profound gap in the literature around intelligently automated handover
management systems.

7.1 Advancing AI-Driven Handover Optimization: Challenges and
Next Steps
The extreme congestion of the wireless networks during the 6G era brings with
it some inherent challenges, which demand a paradigm shift in the handover
management approaches. The traditional handover mechanisms are becoming
ineffective as the density of the network becomes closer to 1000 cells per
square kilometer in an urban setting [133]. Figure 7 shows the deployment of
small cells, which are applicable in 6G handover. This part evaluates major
issues and possible remedies to the attainment of scalable handover manage-
ment in ultra-dense networks (UDNs), specifically, the distributed algorithms
and hierarchical structures. Network density can be measured by the density
complexity relationship whose strengths can be used to measure the effect of
network density on handover management Eq. 25.

Ctotal = αNd · log(Nc)+βi

Nd

∑
i=1

Nc

∑
j=1

Hi j+Y
R

∑
k=1

Ik (25)

Where Ctotal represents total system complexity, Nd is the number of user de-
vices, Nc is the number of cells, Hij represents individual handover complexity,
Ik represents inter-RAT complexity factors, R is the number of different RATs,
alpha, beta, gamma (α,β ,γ) are scaling factors reflecting the relative impact
of each component. These difficulties require the creation of adaptive resource
management measures which are able to adjust the use of resources on the
various dimensions whilst maintaining the aim of handover performance. It is
necessary to implement advanced technologies, including edge computing and
artificial intelligence. should be carefully considered in terms of these resource
obstacles to ensure practical and efficient implementation of handover mana-
gement solutions in the 6G network [134]. Table 3 provides a comprehensive
comparative evaluation of the 6G handover methods proposed against existing
approaches in five key performance parameters. The LSTM and GRU-based
forecasting structure achieves the accuracy of the best handover decision, while
effectively reducing the ping-pong effect, compared to the implementation
of traditional conventional fuzzy logic and Markov chain implementations
[132], as well as the Markov chain. The reinforcement learning approach
shows the best performance in the dynamic environment through autonomous
decision-making capabilities [135], while the Split Federated Learning Metho-
dology provides scalability benefits distributed across a scalability advantage
for heterogeneous multi-RAT. This comparative analysis establishes the compe-
titive advantages of the proposed framework in terms of calculation efficiency,
adaptability, and next-generation 6G ultra-dense network architectures.
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Table 3. Comparison of previous works with our Work in 6G Handovers.

Feature Fuzzy Logic
Controllers

Markov Chain
Models

The proposal works in 6G
LSTM & GRU

Based-Prediction
Reinforcement Learning

(RL)
Split Federated Learning

(SFL)

Adaptability

Dynamically adjusts
parameters based on

real-time input variables
(e.g., RSRP, RSRQ,

velocity).

Predetermined
transition probabilities

require frequent updates
for dynamic

environments.

Learns temporal
dependencies in
mobility patterns,
enabling adaptive

handover prediction.

The methodology obtains the
best handover strategies

independently based on the
network rewards and penalties.

It enhances the flexibility of the
network by implementing
privacy preserving and
collaborative artificial

intelligence.

Computational
Complexity

Higher computational
load due to real-time

fuzzy rule evaluations.

Lower complexity:
Markov transitions

require matrix
computations.

Moderate complexity
due to sequential

learning computations.

Even though, the performance
is high at the start due to the

large training requirements, the
system is efficient after

training.

The method can be scaled by
use of distributed learning that
is deployed on edge devices,

which alleviates the
computational load per device.

Accuracy in
Handover
Decision

Higher accuracy in
heterogeneous and

ultra-dense networks.

Effective in uniform
mobility environments

but struggles with
non-stationary user

behaviors.

Highly accurate in
predicting user mobility

patterns, reducing
unnecessary handovers.

The system also outperforms in
a dynamic environment

through time and handover
selection optimization which is

autonomous.

Strong handover decisions are
achieved by using multi-device
collaboration thus protecting

privacy and providing
opportunities to learn in a

real-time.
Robustness

Against
Ping-Pong

Effect

Minimizes ping-pong
handovers by adaptively
tuning HOM and TTT.

Can predict and
mitigate unnecessary
handovers but lacks

real-time adaptability.

Effectively reduces
handover oscillations

through deep sequence
learning.

This is a method of reducing
ping-pong effects by

maximizing mobility decisions
in the long-term.

Optimization at long term is
enabled by decentralized and

safe model training that reduces
the frequency of the handover.

Scalability

Well-suited for
large-scale ultra-dense
networks with varying

mobility patterns.

More efficient in
macrocell-based

environments with
lower cell density.

Scalable across
multi-RAT

heterogeneous networks,
including terrestrial and

non-terrestrial
paradigms.

The framework can be scaled to
changing 6G dynamic

environments and adjust to the
patterns of mobility.

It is perfectly adaptable to
federated learning in edge-based

6G design, comprising
terrestrial, aerial and satellite

networks.

7.1.1 Distributed Handover Management Algorithms
The implementation of distributed handover management algorithms in ultra-
dense 6G networks represents a critical research challenge that demands in-
novative solutions beyond conventional approaches. The existing centralized
systems of handover management currently have severe weaknesses in ultra-
dense systems, especially in the processing load, signaling overload, and the
latency of decision-making. It makes distributed decision-making even more
complicated is the fact that continuity of the service is required, at the same
time, with the resources being optimally used in the thousands of cells [136].
The basic issue of distributed handover management is the establishment of
effective information-sharing systems between network nodes. The ultra-dense
networks require an advanced strategy to decide on local choices about the
potential handover candidates, with the partial or even unavailable information
sometimes available [137]. This difficulty in particular is amplified when the
mobile users are considered as very mobile, where the change in network
conditions is very quick and thus causes a great burden to the overhead of
information exchange among distributed decision-making organizations. Or-
ganization of the distributed handover decision is a critical issue especially
in maintaining stability in the network, failure to which causes instability.
The existing solutions are often unable to strike the trade-off between local
control and global adjustment particularly in situations where numerous user
equipment (UE) devices would require joint handover choices [138]. The
implementation of a distributed algorithm should address the challenge of
resource adaptation in several dimensions, including spectrum efficiency, ener-
gy consumption, and computational resources. The interdependence of these
factors in the ultra-defense network makes a complex adaptation challenge
that should be navigated in real-time while maintaining acceptable levels of
service quality and reliability [139].

7.1.2 Hierarchical Decision-Making Frameworks
The development of strong hierarchical decision-making structures is a valid
strategy towards the challenge of dealing with the complexity that is inherent
with handover processes in ultra dense 6G environments. These structures
need to balance between two competing requirements: the need to have fast,
localized decision-making and the general need to have the optimisation of the
network comprehensively. At the same time, these systems should be capable
of being used in a network of different densities and architectural designs. The
recent studies have explored hierarchical deep reinforcement techniques that
jointly optimise the radio access technology choice and power allocation within
heterogeneous networks and have shown objectively quantifiable gains in net-
work utility as well as addressing responsiveness to dynamic conditions [140].

The given approach unites Deep Q-network and Deep Deterministic Policy
Gradient methods to address the hidden mixed integer non-linear programming
problem, especially solving it with partial channel state information known
as shown in Fig. 8. However, such hierarchical architecture design presents a
number of basic research problems that require technical innovations.

Figure 8. System model proposed Deep RAT framework for next-generation
HetNets [141].

8. Conclusion
Handover management in ultra-dense 6G networks represents a critical challen-
ge due to the combined effects of extreme network densification, heterogeneous
access technologies, and increasingly stringent service requirements. As mobi-
lity events become more frequent and decision windows narrower, conventional
handover mechanisms struggle to ensure seamless connectivity, low latency,
and reliable service continuity. This review has provided a comprehensive and
structured analysis of recent advances in intelligent handover management,
emphasizing the growing role of artificial intelligence in enabling proactive
and context-aware mobility support. In particular, learning-based mobility pre-
diction, adaptive handover optimization, and emerging architectural enablers
such as edge-assisted intelligence and network slicing were examined as key
components for addressing the complexity of next-generation mobility mana-
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gement. The analysis also highlighted the importance of privacy-preserving
learning paradigms in supporting scalable and trustworthy intelligence in fu-
ture 6G infrastructures. Despite notable progress, the findings indicate that
existing research efforts remain largely fragmented, often addressing indi-
vidual techniques or architectural elements in isolation. Limited cross-layer
integration, narrow performance evaluation perspectives, and insufficient con-
sideration of security and ethical aspects continue to constrain the effectiveness
of current handover solutions in ultra-dense environments. In this context, the
present review contributes a holistic and system-level perspective that concep-
tually links intelligent learning mechanisms, privacy-aware architectures, and
multi-dimensional performance considerations for handover management in
ultra-dense 6G networks. By synthesizing these dimensions within a unified
analytical framework, the study offers a coherent foundation for the develop-
ment of adaptive, reliable, and scalable mobility solutions capable of meeting
the demands of future wireless systems.
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