Document Type : Research Paper
Authors
1 Department of Chemical Engineering, Universitas Sriwijaya, Jl. Raya Palembang–Prabumulih, Ogan Ilir 30662, Indonesia.
2 Chemical Engineering Study Program, Universitas Muhammadiyah Palembang, Jl. Jenderal A. Yani 13 Ulu, Plaju, Palembang 30137, Indonesia.
Abstract
The treatment of petroleum refinery wastewater (PRW) continues to pose a serious environmental issue, particularly due to its high content of heavy metals, especially iron (Fe). This study investigates the adsorption performance and kinetics of iron removal from synthetic petroleum refinery wastewater using ceramic adsorbents formulated from a mixture of clay and RCC spent catalysts. The adsorbent is prepared from a mixture of clay and RCC spent catalysts (ratio 1:1) and evaluated through both batch adsorption systems. Adsorption efficiency was tested at different adsorbent dosages (2.5, 5.0, and 7.5 g), contact times (5-60 minutes), and initial iron concentrations (20-100 mg/L). This study successfully demonstrated the high efficiency of ceramic-based adsorbents in removing iron ions from petroleum refinery wastewater. The maximum removal efficiency of 99.94% was achieved under batch conditions using 2.5 g of adsorbent at an initial iron concentration of 40 mg/L with a contact time of 60 minutes. Adsorption equilibrium and kinetic analyses confirmed that the process well described the Langmuir isotherm and pseudo-second order kinetic models, suggesting monolayer chemisorption on a homogeneous surface with strong interactions between iron ions and the reactive surface site on the adsorbent. The strong linear correlation coefficients (R2 > 0.98 and R2 $ > 0.99, respectively) confirmed the reliability of these models in describing the adsorption mechanism. The use of RCC spent catalyst as a low-cost, thermally stable, and sustainable adsorbent material contributes to both wastewater remediation and industrial waste valorization.
Keywords
- Ref
- Beyer, A. Goksoyr, D. Oystein Hjermann, and J. Klungsoyr, “Environmental effects of offshore produced water discharges: A review focused on the norwegian continental shelf,” Marine Environmental Research, vol. 162, p. 105155, 2020. [Online]. Available: https://doi.org/10.1016/j.marenvres.2020.105155
- T. Amakiri, A. R. Canon, M. Molinari, and A. Angelis-Dimakis, “Review of oilfield produced water treatment technologies,” Chemosphere, vol. 298, p. 134064, 2022. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2022.134064
- Zhang, M. Li, P. Lv, X. Zhu, L. Zhao, and X. Zhang, “Disposal and reuse of drilling solid waste from a massive gas field,” Procedia Environ. Sci., vol. 31, no. 2, p. 577–581, 2016. [Online]. Available: https://doi.org/10.1016/j.proenv.2016.02.089
- H. Khader, T. J. Mohammed, N. Mirghaffari, A. D. Salman, T. Juzsakova, and T. A. Abdullah, “Removal of organic pollutants from produced water by batch adsorption treatment,” Clean Technol. Environ. Policy, vol. 24, no. 2, p. 713–720, 2022. [Online]. Available: https://doi.org/10.1007/s10098-021-02159-z
- Anugrah, M. Said, and D. Bahrin, “Produced water treatment using electrocoagulation combination method with aluminum(al) and iron (fe) electrodes and activated carbon adsorption treatment,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, no. 2, p. 703–711, 2022. [Online]. Available: https://doi.org/10.18517/ijaseit.12.2.12884
- Salem and T. Thiemann, “Produced water from oil and gas exploration—problems, solutions and opportunities,” J. Water Resour. Prot., vol. 14, no. 2, pp. 142–185, 2022. [Online]. Available: https://doi.org/10.4236/jwarp.2022.142009
- T. Amakiri, N. A. Ogolo, A. Angelis-Dimakis, and O. Albert, “Physicochemical assessment and treatment of produced water: A case study in niger delta nigeria,” Petroleum Research, vol. 8, no. 1, pp. 87–95, 2023. [Online]. Available: https://doi.org/10.1016/j.ptlrs.2022.05.003
- A. Novira, S. Nasir, and F. Hadiah, “Produced water treatment using the residue catalytic cracking (rcc) spent catalyst as ceramic filter material integrated with reverse osmosis (ro) system,” J. Appl. Sci. Eng., vol. 26, no. 3, p. 403–411, 2022. [Online]. Available: https://doi.org/10.6180/jase.202303 26(3).0011
- Jim´enez, M. Mic´o, M. Arnaldos, F. Medina, and E. Contreras, “State of the art of produced water treatment,” Chemosphere, vol. 192, no. 1, p. 186–208, 2018. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2017.10.139
- T. Amakiri, A. R. Canon, M. Molinari, and A. Angelis-Dimakis, “Review of oilfield produced water treatment technologies,” Chemosphere, vol. 298, no. 2, p. 134064, 2022. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2022.134064
- Munirasu, M. A. Haija, and F. Banat, “Use of membrane technology for oil field and refinery produced water treatment - a review,” Process Saf. Environ. Prot., vol. 100, no. 1, p. 183–202, 2016. [Online]. Available: https://doi.org/10.1016/j.psep.2016.01.010
- M. Muliwa, O. A. Oyewo, and A. Maity, “Recent progress on the removal of aqueous mercury by carbon-based adsorbents: A review,” Inorg. Chem. Commun, vol. 156, p. 111207, 2023. [Online]. Available: https://doi.org/10.1016/j.inoche.2023.111207
- A. Al-Ghouti, M. A. Al-Kaabi, M. Y. Ashfaq, and D. A. Da’na, “Produced water characteristics, treatment and reuse: A review,” J. Water Process Eng ., vol. 28, no. 1, p. 222–239, 2019. [Online]. Available: https://doi.org/10.1016/j.jwpe.2019.02.001
- T. Hendges, T. C. Costa, B. Temochko, S. Y. G´omez Gonz´alez, L. P. Mazur, B. A. Marinho, A. da Silva, S. E. Weschenfelder, A. A. U. de Souza, and S. M. G. U. de Souza, “Adsorption and desorption of watersoluble naphthenic acid in simulated offshore oilfield produced water,” Process Safety and Environmental Protection, vol. 145, pp. 262–272, 2021. [Online]. Available: https://doi.org/10.1016/j.psep.2020.08.018
- E. D. Putri, S. Nasir, and F. Hadiah, “Application of ceramic filter and reverse osmosis membrane for produced water treatment,” Pollution, vol. 8, no. 4, p. 1103–1115, 2022. [Online]. Available: http://doi.org/10.22059/POLL.2022.337380.1343
- Anggoro, L. Buchori, and M. F. Putra, “Regeneration method for spent fcc catalysts: Brief review,” J. Res. Chem., vol. 4, no. 2, p. 49–53, 2023. [Online]. Available: https://doi.org/10.22271/reschem.2023.v4.i2a.96
- Karm, A. D. Subhi, and R. S. Hamied, “Synthesis, characterization and application of gamma-alumina as adsorbent material to enhance iron removal from produced water,” UPB Sci. Bull. Ser. B Chem. Mater. Sci., vol. 82, no. 1, p. 237–246, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:222089565
- Mekhelf, A. Subhi, and R. Hamied, “Removal of iron from produced water using silica adsorbent material,” Eng. Technol. J., vol. 38, no. 08, pp. 1154–1159, 2020. [Online]. Available: https://doi.org/10.30684/etj.v38i8a.1125
- Vogt and B. M. Weckhuysen, “The concept of active site in heterogeneous catalysis,” Nat. Rev. Chem., vol. 6, no. 2, p. 89–111, 2022. [Online]. Available: https://doi.org/10.1038/s41570-021-00340-y
- Azizi, M. Forghani, L. A. Kafshgari, and A. Hassanzadeh, “Adsorptive removal behavior of pb(ii) and cr(vi) pollutants from an aqueous environment onto polyaniline-modified mil100(fe),” Minerals, vol. 13, no. 3, p. 299, 2023. [Online]. Available: https://doi.org/10.3390/min13030299
- A. Karim, S. Nasir, S. A. Rachman, and N.Novia, “Adsorption kinetic of mn(ii) ions in synthetic acid mine water using calcium carbide residue as an adsorbents,” J. Comput. Theor. Nanosci, vol. 16, no. 7, p. 2892–2899, 2019. [Online]. Available: https://doi.org/10.1166/jctn.2019.8192
- N. Akoji, “Adsorption performance of packed bed column for the removal of lead (ii) using velvet tamarind (dialium indum) shells,” Asian J. Appl. Chem. Res., vol. 3, no. 2, p. 1–14, 2019. [Online]. Available: https://doi.org/10.9734/ajacr/2019/v3i230089
- He, P. Wu, W. Xiao, G. Li, J. Yi, Y. He, C. Chen, P. Ding, and Y. Duan, “Efficient removal of pb(ii) from aqueous solution by a novel ion imprinted magnetic biosorbent: Adsorption kinetics and mechanisms,” PLOS ONE, vol. 14, no. 3, pp. 1–17, 03 2019. [Online]. Available: https://doi.org/10.1371/journal.pone.0213377
- Vigdorowitsch, A. Pchelintsev, L. Tsygankova, and E. Tanygina, “Freundlich isotherm: An adsorption model complete framework,” Appl. Sci. (Switzerland), vol. 11, no. 17, p. 8078, 2021. [Online]. Available: https://doi.org/10.3390/app11178078
- -P. Simonin, “On the comparison of pseudo-first order and pseudosecond order rate laws in the modeling of adsorption kinetics,” Chemical Engineering Journal, vol. 300, pp. 254–263, 2016. [Online]. Available: https://doi.org/10.1016/j.cej.2016.04.079
- N. Tran, “Applying linear forms of pseudo-second-order kinetic model for feasibly identifying errors in the initial periods of time-dependent adsorption datasets,” Water (Switzerland), vol. 15, no. 6, p. 1231, 2023. [Online]. Available: https://doi.org/10.3390/w15061231
- A. Edet and A. O. Ifelebuegu, “Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste,” Processes, vol. 8, no. 6, p. (665)1–15, 2020. [Online]. Available: https://doi.org/10.3390/PR8060665
- C. Bullen, S. Saleesongsom, K. Gallagher, and D. J. Weiss, “A revised pseudo-second-order kinetic model for adsorption, sensitive to changes in adsorbate and adsorbent concentrations,” Langmuir, vol. 37, no. 10, p. 3189–3201, 2021. [Online]. Available: https://doi.org/10.1021/acs.langmuir.1c00142
- Acharya, G. Jeppu, C. R. Girish, and B. Prabhu, “Development of a multicomponent adsorption isotherm equation and its validation by modeling,” Langmuir, vol. 39, no. 49, p. 17862–17878, 2023. [Online]. Available: https://doi.org/10.1021/acs.langmuir.3c02496
- Annan, B. Agyei-Tuffour, Y. D. Bensah, D. S. Konadu, A. Yaya, B. Onwona-Agyeman, and E. Nyankson, “Application of clay ceramics and nanotechnology in water treatment: A review,” Cogent Engineering, vol. 5, no. 1, p. 1476017, 2018. [Online]. Available: https://doi.org/10.1080/23311916.2018.1476017
- T. P. Atheba, N. B. Allou, and P. Drogui, “Adsorption kinetics and thermodynamics study of butylparaben on activated carbon coconut based,” J. Encapsulation Adsorpt. Sci., vol. 8, no. 2, p. 39–57, 2018. [Online]. Available: https://doi.org/10.4236/jeas.2016.82003
- A. Al-Badaani, A. F. Hifney, M. S. Adam, and M. Gomaa, “Low-cost biosorption of fe(ii) and fe(iii) from single and binary solutions using ulva lactuca-derived cellulose nanocrystals-graphene oxide composite film,” Sci. Rep., vol. 13, no. 1, p. 6422, 2023. [Online]. Available: https://doi.org/10.1038/s41598-023-33386-7
- B. Apea, B. E. Akorley, E. O. Oyelude, and B. Ampadu, “Evaluation of the adsorption behavior and divalent metal ions removal efficiency of ceramic point-of-use water filter materials,” Environ. Syst. Res., vol. 12, no. 37, 2023. [Online]. Available: https://doi.org/10.1186/s40068-023-00322-7
- Gameiro, C. Costa, J. Labrincha, and R. M. Novais, “Reusing spent fluid catalytic cracking catalyst as an adsorbent in wastewater treatment applications,” Mater. Today Sustain, vol. 24, p. 100555, 2023. [Online]. Available: https://doi.org/10.1016/j.mtsust.2023.100555
- M. Elewa, A. A. Amer, M. F. Attallah, H. A. Gad, Z. A. M. Al-Ahmed, and I. A. Ahmed, “Chemically activated carbon based on biomass for adsorption of fe(iii) and mn(ii) ions from aqueous solution,” Materials (Basel), vol. 16, no. 3, pp. 373–381, 2023. [Online]. Available: https://doi.org/10.3390/ma16031251
- K. Al Dawery, M. K. Al-Sawai, G. M. S. Al Muzami, S. H. K. Annamareddy, M. S. Al Dawari, R. H. Harharah, H. N. Harharah, and A. Amari, “Treatment of produced water using prepared activated carbon-based sewage sludge,” Separations, vol. 10, no. 10, 2023. [Online]. Available: https://www.mdpi.com/2297-8739/10/10/519
- Kuldeyev, M. Seitzhanova, S. Tanirbergenova, K. Tazhu, E. Doszhanov, Z. Mansurov, S. Azat, R. Nurlybaev, and R. Berndtsson, “Modifying natural zeolites to improve heavy metal adsorption,” Water, vol. 15, no. 12, 2023. [Online]. Available: https://www.mdpi.com/2073-4441/15/12/2215
- Motsi, N. A. Rowson, and M. J. H. Simmons, “Adsorption of heavy metals from acid mine drainage by natural zeolite,” Int. J. Miner. Process., vol. 92, no. 1–2, p. 42–48, 2009. [Online]. Available: https://doi.org/10.1016/j.minpro.2009.02.005
- Fu, Y. Li, Z. Yu, J. Shen, J. Li, M. Zhang, T. Ding, L. Xu, and S. S. Lee, “Ammonium removal using a calcined natural zeolite modified with sodium nitrate,” Journal of Hazardous Materials, vol. 393, p. 122481, 2020. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2020.122481