Document Type : Research Paper

Authors

1 Laboratory of Aeronautics and Propulsion Systems, University of Sciences and Technology in Oran (USTO), Oran 31000, Algeria.

2 Laboratory of Applied Hydrology and Environment, Faculty of Science and Technology, University of Ain Temouchent, Ain Temouchent 46000, Algeria.

10.30772/qjes.2025.161063.1581

Abstract

A numerical investigation is conducted to improve the overall performance of a photovoltaic (PV) using phase change materials (PCMs) reinforced with different types of foam materials. The PV panel was modelled as an aluminium plate in contact with a rectangular cavity filled with PCM with or without foam. The impact of the melting point of PCMs, as well as the effect of adding (Cu), (Al),and (SiC) foam to RT25 on the cooling performance of the PV were analyzed. The results showed that the melting point of MCPs affected the PV temperature, where RT25 reduced 10.7°C compared to RT44,and the addition of foam to PCM with a porosity of 97% and an air permeability index (IPP) of 5 is the most optimal in this system. such as the use of Cu as foam allows an improvement of 16.18% compared to standard PV and 12% compared to the use of PCM alone.This work also highlights the positive impact of improving PV efficiency on economic and environmental aspects. Where the PV/PCM(RT25)+foam(SiC) combination is a high-performance and more economical solution. On the other hand, the proposed cooling system can increase energy production by 24 kWh/m²/year and reduce CO₂ emissions by up to 48 kg/m²/year.

Keywords

  • REFERENCES

    • Hamzat, A. Z. Sahin, M. I. Omisanya, and L. M. Alhems, “Advances in pv and pvt cooling technologies: A review,” Sustain. Energy Technol. Assess., vol. 47, p. 101360, 2021. [Online]. Available: https://doi.org/10.1016/j.seta.2021.101360
    • Sheikh, M. Jasim, M. Qasim, A. Qaisieh, M. O. Hamdan, and F. Abed, “Enhancing pv solar panel efficiency through integration with a passive multi-layered pcms cooling system: A numerical study,” Int. J. Thermofluid, vol. 23, p. 100748, 2024. [Online]. Available: https://doi.org/10.1016/j.ijft.2024.100748
    • Y. Othman, A. Ibrahim, G. L. Jin, M. H. Ruslan, and K. Sopian, “Photovoltaic-thermal (pv/t) technology – the future energy technology,” Renew. Energy, vol. 49, no. 2, p. 171–174, 2013. [Online]. Available: https://doi.org/10.1016/j.renene.2012.01.038
    • Perraki and P. Kounavis, “Effect of temperature and radiation on the parameters of photovoltaic modules,” J. Renew. Sustain. Energy, vol. 8, no. 1, p. 013102, 2016. [Online]. Available: https://doi.org/10.1063/1.4939561
    • Firoozzadeh, A. Shiravi, and M. Shafiee, “An experimental study on cooling the photovoltaic modules by fins to improve power generation: Economic assessment,” Iranica. J. Energy Environ., vol. 10, no. 2, pp. 80–84, 2019. [Online]. Available: https://doi.org/10.5829/IJEE.2019.10.02.02
    • Grubisˇic´-Cˇ abo, S. Nizˇetic´, D. Cˇ oko, I. M. Kragic´, and A. Papadopoulos, “Experimental investigation of the passive cooled free-standing photovoltaic panel with fixed aluminum fins on the backside surface,” J. Clean. Prod., vol. 176, p. 119–129, 2018. [Online]. Available: https://doi.org/10.1016/j.jclepro.2017.12.149
    • kunihide, “Solaire energy converter using a solaire cell in a shallow liquid-gel layer’, united states patent, us 7,244888 b1„” no. 1, 2007.
    • Zhu, R. F. Boehm, Y. Wang, C. Halford, and Y. Sun, “Water immersion cooling of pv cells in a high concentration system,” solar Energy Mater. Sol. Cells, vol. 95, no. 2, p. 538–545, 2011. [Online]. Available: https://doi.org/10.1016/j.solmat.2010.08.037
    • -Y. Wu, Q.-L. Zhang, L. Xiao, and F.-H. Guo, “A heat pipe photovoltaic/ thermal (pv/t) hybrid system and its performance evaluation,” Energy and Buildings, vol. 43, no. 12, p. 3558–3567, 2011. [Online]. Available: https://doi.org/10.1016/j.enbuild.2011.09.017
    • M. S. Bahaidarah, A. A. B. Baloch, and P. Gandhidasan, “Uniform cooling of photovoltaic panels: A review,” Renew. Sustain. Energy Rev., vol. 57, p. 1520–1544, 2016. [Online]. Available: https://doi.org/10.1016/j.rser.2015.12.064
    • Tan, A. Date, G. Fernandes, B. Singh, and S. Ganguly, “Efficiency gains of photovoltaic system using latent heat thermal energy storage,” Energy Procedia, vol. 110, p. 83–88, 2017. [Online]. Available: https://doi.org/10.1016/j.egypro.2017.03.110
    • J. Reddy, M. F. Ghazali, and S. Kumarasamy, “Innovations in phase change materials for diverse industrial applications: A comprehensive review,” Results Chemistry., vol. 8, p. 101552, 2024. [Online]. Available: https://doi.org/10.1016/j.rechem.2024.101552
    • Ismail, W. K. Zahra, S. Ookawara, and H. Hassan, “Boosting the air conditioning unit performance using phase change material: Impact of system configuration,” J. Energy Storage, vol. 56, no. PartA, p. 105864, 2022. [Online]. Available: https://doi.org/10.1016/j.est.2022.105864
    • S. Soliman, S. Zhu, L. Xu, J. Dong, and P. Cheng, “Melting enhancement of nano-phase change material in cylindrical enclosure using convex/concave dimples: Numerical simulation with experimental validation,” J. Energy Storage, vol. 44, no. part B, p. 103470, 2021. [Online]. Available: https://doi.org/10.1016/j.est.2021.103470
    • A. Nada and D. H. El-Nagar, “Possibility of using pcms in temperature control and performance enhancements of free stand and building integrated pv modules,” Renew. Energy, vol. 127, p. 630–641, 2018. [Online]. Available: http://doi.org/10.1016/j.renene.2018.05.010
    • Yang, L. Sun, Y. Yuan, X. Zhao, and X. Cao, “Experimental investigation on performance comparison of pv/t-pcm system and pv/t system,” Renew. Energy, vol. 119, no. 2, p. 152–159, 2018. [Online]. Available: https://doi.org/10.1016/j.renene.2017.11.094
    • B. Elsheniti, S. Zaheer, O. Zeitoun, H. Alshehri, A. AlRabiah, and Z. Almutairi, “Experimental evaluation of a solar low-concentration photovoltaic/thermal system combined with a phase-change material cooling technique,” Appl. Sci, vol. 13, no. 1, p. 25, 2022. [Online]. Available: https://doi.org/10.3390/app13010025
    • B, V. A. A, G. P, A. M. M. S. A, and A. T, “Solar photovoltaic cooling using paraffin phase change material: Comprehensive assessment,” Renewable and Sustainable Energy Reviews, vol. 197, p. 114372, 2024. [Online]. Available: https://doi.org/10.1016/j.rser.2024.114372
    • Khanna, K. S. Reddy, and T. K. Mallick, “Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions,” Energy, vol. 133, p. 887–899, 2017. [Online]. Available: https://doi.org/10.1016/j.energy.2017.05.150
    • K. A. M. M. Awad and O. M. Ali, “Performance of bi-fluid pv/thermal collector integrated with phase change material: Experimental assessment,” Sol. Energy, vol. 235, p. 50–61, 2022. [Online]. Available: https://doi.org/10.1016/j.solener.2022.02.031
    • Chen, J. Zhang, M. Shen, H. Fang, and Y. Ma, “Comprehensive numerical modeling of intermittent flow cooling with enhanced photovoltaic efficiency in pvt/npcm systems,” Case Stud. Therm. Eng., vol. 58, p. 104420, 2024. [Online]. Available: https://doi.org/10.1016/j.csite.2024.104420
    • W. N. Li, L. Che, Y. Fan, H. Liu, J. Ji, and B. Yu, “A continuous 24-hour power generated pv-teg-pcm hybrid system enabled by solar diurnal photovoltaic/thermal conversion and nocturnal sky radiative cooling,” Energy Convers. Manag., vol. 321, p. 119086, 2024. [Online]. Available: https://doi.org/10.1016/j.enconman.2024.119086
    • Lv, J. Yang, J. Ren, B. Zhang, Y. Lai, and Z. Chang, “Research and numerical analysis on performance optimization of photovoltaic-thermoelectric system incorporated with phase change materials,” Energy, vol. 263, p. 125850, 2023. [Online]. Available: https://doi.org/10.1016/j.energy.2022.125850
    • Ibrahim, M. E. Hazar, F. Hachem, and M. Khaled, “A comprehensive experimental study of cooling photovoltaic panels using phase change materials under free and forced convection – experiments and transient analysis,” J. Energy Storage, vol. 81, p. 110511, 2024. [Online]. Available: https://doi.org/10.1016/j.est.2024.110511
    • Firoozzadeh and A. H. Shiravi, “Simultaneous use of porous medium and phase change material as coolant of photovoltaic modules; thermodynamic analysis,” J.Energy Storage, vol. 54, p. 105276, 2022. [Online]. Available: https://doi.org/10.1016/j.est.2022.105276
    • R. Abdulmunem, P. M. Samin, H. A. Rahman, H. A. Hussien, and I. I. Mazali, “Enhancing pv cell’s electrical efficiency using phase change material with copper foam matrix and multi-walled carbon nanotubes as passive cooling method,” Renew. Energy, vol. 160, no. 4, p. 663–675, 2020. [Online]. Available: https://doi.org/10.1016/j.renene.2020.07.037
    • Hachem, B. Abdulhay, M. Ramadan, H. E. Hage, M. G. E. Rab, and M. Khaled, “Improving the performance of photovoltaic cells using pure and combined phase change materials – experiments and transient energy balance,” Renew. Energy, vol. 107, no. 6, p. 567–575, 2017. [Online]. Available: https://doi.org/10.1016/j.renene.2017.02.032
    • Errebii, A. Mourid, M. E. Alami, and Y. Yao, “Analysis of the impact of metal foam with phase change material on solar photovoltaic thermal system efficiency,” J. Energy Storage,, vol. 98, no. part A, p. 113064, 2024. [Online]. Available: https://doi.org/10.1016/j.est.2024.113064
    • Errebii, A. Mourid, M. E. Alami, and Y. Yao, “Evaluation and optimization of thermal exchange performance for a metal foam/phase change material composite integrated into a heat sink,” Energy Storage, vol. 99, no. Part A, p. 113211, 2024. [Online]. Available: https://doi.org/10.1016/j.est.2024.113211
    • Rathore and S. Shukla, “Enhanced thermophysical properties of organic pcm through shape stabilization for thermal energy storage in buildings: A state of the art review,” Energy and Build., vol. 236, no. 1, p. 110799, 2021. [Online]. Available: https://doi.org/10.1016/j.enbuild.2021.110799
    • Abhat, “Low temperature latent heat thermal energy storage: Heat storage materials,” Sol. Energy, vol. 30, no. 4, p. 313–332, 1983. [Online]. Available: https://doi.org/10.1016/0038-092X(83)90186-X
    • Zalba, J. M. Marın, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications,” Appl. Therm. Eng., vol. 23, no. 3, p. 251–283, 2003. [Online]. Available: https://doi.org/10.1016/S1359-4311(02)00192-8
    • K. Rathod and J. Banerjee, “Thermal stability of phase change materials used in latent heat energy storage systems: A review,” Renew. Sustain. Energy Rev., vol. 18, p. 246–258, 2023. [Online]. Available: https://doi.org/10.1016/j.rser.2012.10.022
    • Ma, J. Zhao, and Z. Li, “Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material,” Appl. Energy, vol. 228, p. 1147–1158, 2018. [Online]. Available: https://doi.org/10.1016/j.apenergy.2018.06.145
    • H. Biwole, P. Eclache, and F. Kuznik, “Phase-change materials to improve solar panel’s performance,” Energy Build., vol. 62, p. 59–67, 2013. [Online]. Available: https://doi.org/10.1016/j.enbuild.2013.02.059
    • Jiang, F. Jiang, C. Li, G. Leng, X. Zhao, Y. Li, T. Zhang, G. Xu, Y. Jin, C. Yang, and Y. Ding, “A form stable composite phase change material for thermal energy storage applications over 700 °c,” Applied Sciences, vol. 9, no. 5, 2019. [Online]. Available: https://doi.org/10.3390/app9050814
    • Chen, J. Sun, P. Jiang, Z. Chai, B. Zhang, and J. Li, “Review on porous ceramic-based form-stable phase change materials preparation’, enhance thermal conductivity and application,” ChemBioEng Reviews, vol. 10, no. 6, pp. 941–958, 2023. [Online]. Available: https://doi.org/10.1002/cben.202300023
    • Jacobson and J. Smialek, “Corrosion pitting of sic by molten salts,” The Electrochemical Society, vol. 133, no. 12, pp. 2615–2621, 1986. [Online]. Available: https://doi.org/10.1149/1.2108490
    • Chen, H. Wang, H. Gao, X. Wang, and B. Ma, “Effects of porous silicon carbide supports prepared from pyrolyzed precursors on the thermal conductivity and energy storage properties of paraffin-based composite phase change materials,” Journal of Energy Storage, vol. 56, no. PartB, p. 106046, 2022. [Online]. Available: https://doi.org/10.1016/j.est.2022.106046
    • Yu, X. Li, J. Wang, and S. Zhang, “form-stable na2co3-nacl/mullite phase change composite with sic enhanced thermal conductivity for high temperature thermal storage,” Journal of Energy Storage, vol. 87, p. 111511, 2024. [Online]. Available: https://doi.org/10.1016/j.est.2024.111511
    • Adesusi, O. Adetunji, S. Kuye, S. Ipadeola, S. I. Kuye, A. I. Musa, T. J. Erinle, and O. B. Gbadamosi-Olatunde, “Comprehensive review of the materials degradation phenomena in solid–liquid phase change materials for thermal energy storage,” International Journal of Thermofluids, vol. 18, no. 2, p. 100360, 2023. [Online]. Available: https://doi.org/10.1016/j.ijft.2023.100360
    • T. DeHoff, Thermodynamics in Materials Science (2nd ed.). Taylor and Francis Group, 2006, no. ISBN 9780849340659.
    • Jiang, F. Jiang, and C. L. et al, “A form stable composite phase change material for thermal energy storage applications over 700 ◦c,” journal applied sciences, vol. 9, no. 5, p. 814, 2019. [Online]. Available: https://doi.org/10.3390/app9050814
    • Adler, “Ceramic diesel particulate filters,” I.J. Applied Ceramic Technology, vol. 2, no. 6, pp. 429–439, 2005. [Online]. Available: https://doi.org/10.1111/j.1744-7402.2005.02044.x
    • J. Pyzik and C. G. Li, “New design of a ceramic filter for diesel emission control applications,” I.J. Applied Ceramic Technology, vol. 2, no. 6, pp. 440–451, 2005. [Online]. Available: https://doi.org/10.1111/j.1744-7402.2005.02045.x
    • Koumoto, M. Shimohigoshi, T. Shunji, and H. Yanagida, “Thermoelectric energy conversion by porous sic ceramics,” Journal of Materials Science Letters, vol. 6, no. 2, p. 1453–1455, 1987. [Online]. Available: https://doi.org/10.1007/BF01689320
    • Fukushima, “Microstructural control of macroporous silicon carbide,” Journal of the Ceramic Society of Japan, vol. 121, no. 1410, p. 162–168, 2013. [Online]. Available: https://doi.org/10.2109/jcersj2.121.162
    • Das and N. Kayal, “Thermal shock resistance of porous silicon carbide ceramics prepared using clay and alumina as additives,” Transactions of the Indian Ceramic Society, vol. 78, no. 3, pp. 165–171, 2019. [Online]. Available: https://doi.org/10.1080/0371750X.2019.1665478
    • J. Huang, P. C. Eames, and B. Norton, “Thermal regulation of building-integrated photovoltaics using phase change materials,” Int. J. Heat Mass Transf., vol. 47, no. 12–13, p. 2715–2733, 2004. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.015
    • Sharma, L. Micheli, W. Chang, A. A. Tahir, K. S. Reddy, and T. K. Mallick, “Nano-enhanced phase change material for thermal management of bicpv,” Appl. Energy, vol. 208, p. 719–733, 2017. [Online]. Available: https://doi.org/10.1016/j.apenergy.2017.09.076
    • Nishad, Z. Ahmad, and I. Krupa, “Enhancement of photovoltaic module performance by thermal management using shape-stabilized pcm composites,” Sol. Energy Mater. Sol. Cells, vol. 273, p. 112948, 2024. [Online]. Available: https://doi.org/10.1016/j.solmat.2024.112948
    • Xu, Q. Ren, Z.-J. Zheng, and Y.-L. He, “Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media,” Appl. Energy, vol. 193, no. 2, p. 84–95, 2017. [Online]. Available: https://doi.org/10.1016/j.apenergy.2017.02.019
    • I. Mohammed, P. Talebizadehsardari, J. M. Mahdi, A. Arshad, A. Sciacovelli, and D. Giddings, “Improved melting of latent heat storage via porous medium and uniform joule heat generation,” J. Energy Storage, vol. 31, no. 2, p. 101747, 2020. [Online]. Available: https://doi.org/10.1016/j.est.2020.101747
    • Arshad, M. Jabbal, P. T. Sardari, M. A. Bashir, H. Faraji, and Y. Yan, “Transient simulation of finned heat sinks embedded with pcm for electronics cooling,” Therm. Sci. Eng. Prog, vol. 18, no. 2, p. 100520, 2020. [Online]. Available: https://doi.org/10.1016/j.tsep.2020.100520
    • V. Calmidi and R. L. Mahajan, “Forced convection in high porosity metal foams,” J. Heat Transf., vol. 122, no. 3, p. 557–565, 2000. [Online]. Available: https://doi.org/10.1115/1.1287793
    • Hasan, J. Sarwar, H. Alnoman, and S. Abdelbaqi, “Yearly energy performance of a photovoltaic-phase change material (pv-pcm) system in hot climate,” Sol. Energy, vol. 146, no. 2, p. 417–429, 2017. [Online]. Available: https://doi.org/10.1016/j.solener.2017.01.070
    • ´ Eponge M´etallique Poreuse En Cuivre Mousse. [Online]. Available: https://www.made-in-china.com
    • Nishad, Z. Ahmad, and I. Krupa, “Enhancement of photovoltaic module performance by thermal management using shape-stabilized pcm composites,” Sol. Energy Mater. Sol. Cells, vol. 273, p. 112948, 2024. [Online]. Available: https://doi.org/10.1016/j.solmat.2024.112948
    • Deniz and S. C, ınar, “Energy, exergy, economic and environmental (4e) analysis of a solar desalination system with humidification-dehumidification,” Energy Convers. Manag., vol. 126, no. 2, p. 12–19, 2016. [Online]. Available: ht tps://doi.org/10.1016/j.enconman.2016.07.064
    • Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, “Guidelines for national greenhouse gas inventories, energy. prepared by the national greenhouse gas inventories programme,” IPCC Guidelines for National Greenhouse Gas Inventories, vol. 2, 2006. [Online]. Available: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
    • IEA, “Global energy review 2025,” IEA (2025), vol. IEA, Paris, 2023. [Online]. Available: https://www.iea.org/reports/global-energy-revie w-2025
    • R. Voller and C. Prakash, “A fixed grid numerical mode ing methodology for convection-diffusion mushy region phasechange problems,” International Journal of Heat and Mass Transfer, vol. 30, no. 8, pp. 1709–1719, 1987. [Online]. Available: https://doi.org/10.1016/0017-9310(87)90317-6
    • Ji, Z. Qin, Z. Low, S. Dubey, F. H. Choo, and F. Duan, “Non-uniform heat transfer suppression to enhance pcm melting by angled fins,” Appl. Therm. Eng., vol. 129, p. 269–279, 2018. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2017.10.030
    • Anastasiou, K. O. Lorentz, G. J. Stein, and P. D. Mitchell, “Prehistoric schistosomiasis parasite found in the middle east,” Lancet Infect. Dis., vol. 14, no. 7, p. 553–554, 2014. [Online]. Available: https://doi.org/10.1016/S1473-3099(14)70794-7
    • Thermal Conductive Materials. [Online]. Available: https://www.made-in-china.com
    • Kamkari, H. Shokouhmand, and F. Bruno, “Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure,” Int. J. Heat Mass Transf., vol. 72, p. 186–200, 2014. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.014
    • Y. Zhao, W. Lu, and Y. Tian, “Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (pcms),” Sol. Energy, vol. 84, no. 8, p. 1402–1412, 2010. [Online]. Available: https://doi.org/10.1016/j.solener.2010.04.022
    • Liu, Y. Yao, and H. Wu, “Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage,” Appl. Energy, vol. 112, pp. 1222–1232, 2013. [Online]. Available: https://doi.org/10.1016/j.apenergy.2013.02.022