Document Type : Research Paper

Authors

Department of Mechanical Engineering, Collage of Engineering, University of Al-Qadisiyah, Ad-Diwaniyah, Iraq.

Abstract

This work deals with the investigation of radiation models for combustion spray. The n-pentane fuel C5h12 is used for chemical reactions with the air. The main objective of these simulations is to compare the experimental data and radiation models for spray combustion and to select the best radiation model. The model is used to interpret the structure and properties of the prediction for spray combustion. The simulated cases are carried out using Ansys Fluent. The mixture fracture probability density function is used to evaluate the non-premixed combustion of vaporized fuel droplets. The Radiation models (p1, discrete coordinate, surface to surface, and Roseland) are used to predict local properties in two dimensions. The results of the numerical simulation are compared with the experimental data. The results showed that the p1 radiation model provides good results through temperature, turbulence kinetic energy, and velocity components.

Keywords

  • Sikic, Dembele, S. Wen, Non-grey radiative heat transfer modeling in LES-CFD simulated methanol pool fires. Journal of Quantitative Spectroscopy and Radiative Transfer234 (2019) 78-89.‏
  • Siegel, J. R. Howell, Thermal Radiation Heat   Transfer, McGraw Hill New York, (1993)
  • DN, Modeling of 3-D  non-gray gases radiation  by  coupling  the finite volume method with weighted  sum  of gray gases model, Int J   Heat   Mass  Transfer, 47 (2004) 1367–82.
  • DN, O. TJ, A. CH, Modeling the radiation of anisotropically scattering media by coupling Mie   theory with    finite volume method, Int J Heat Mass Transfer, 47(26) (2004) 5765–80.
  • Sun et al, One-dimensional P1 method for gas radiation heat transfer in spherical geometry, International Journal of Heat and Mass Transfer, 145( 2019) p. 118777.
  • Yin, Nongray-gas effects in modeling of large-scale oxy-fuel combustion processes, Energy and Fuels 26 (2012) 3349e3356.
  • A. Gamil et al. , Assessment of numerical radiation models on the heat transfer of an aero-engine combustion chamber, Case Studies in Thermal Engineering, 22 (2020) p. 100772.
  • W. Baek., J. H. Park, C. E. ,Choi Investigation of droplet combustion with nongray gas radiation effects. Combustion science and technology142(1-6) (1999) 55-79.‏
  • Hjärtstam, R. Johansson, K. Andersson, F. Johnsson, Computational fluid dynamics  modeling of oxy-fuel flames:  the role of soot and gas radiation, Energy and Fuels 26 (2012) 2786e2797.
  • K. Denison, A spectral  line-based weighted-sum-of-gray-gases  model for arbitrary RTE solvers, Ph.D. Thesis,Brigham Young University, Provo, UT, 1994.
  • E. ,Beak SW, Numerical analysis of a spray combustion with non gray  radiation using weighted sum of gray gases model, J  Combust Sci Technol, 115 (1996) 297–315.
  • E. Fordoei, K. Mazaheri, A. Mohammadpour, Effects of hydrogen addition to methane on the thermal and ignition delay characteristics of fuel-air, oxygen- enriched and oxy-fuel MILD combustion, International Journal of HydrogeEnergy, 46(68) (2021) p. 34002-34017.
  • Frank, W. Heidemann, K. Spindler, Modeling of the surface-to-surface radiation exchange using a Monte Carlo method, Journal of Physics: Conference Series, (2016) 745.
  • A. Hosseini, Numerical study of inlet air swirl intensity effect of a Methane-Air Diffusion Flame on its combustion characteristics, Case Studies in Thermal Engineering, 18 2020 p. 100610.
  • Tóth, C. Brackmann, Y. Ögren, , M. N. Mannazhi, J. Simonsson, A. Sepman, H. Wiinikka,  Experimental and numerical study of biomass fast pyrolysis oil spray combustion: Advanced laser diagnostics and emission spectrometry, Fuel, 252 (2019) 125-134.
  • Krishnamoorthy A computationally efficient P1 radiation model for modern combustion systems utilizing pre-conditioned conjugate gradient methods. Applied Thermal Engineering, 119 (2017) 197-206.‏
  • Crnjac, Implementation of the Rosseland and the P1 radiation models in the system of Navier-stokes equations with the boundary element method, International Journal of Computational Methods and Experimental Measurements, 5(3) (2017) p. 348-358.
  • Jurić, , Z. Petranović, , M. Vujanović, , N. Duić, Numerical assessment of radiative heat transfer impact on pollutant formation processes in a compression ignition engine, Journal of Cleaner Production, 275 (2020) 123087.
  • Furuhata, S. Tanno, T. Miura, Y. Ikeda, T. Nakajima, Performance of numerical spray combustion simulation, Energy conversion and management, 38(10-13) (1997) 1111-1122.
  • Yue, R. D. Reitz, Numerical investigation of radiative heat transfer in internal combustion engines, Applied Energy, 235 (2019) 147-163.
  • Aghanajafi , A. Abjadpour, Discrete ordinates method applied to radiative transfer equation in complex geometries meshed by structured and unstructured grids, Journal of the Brazilian Society of Mechanical Sciences and    Engineering, 2015. 38.
  • Bellan, et al., Numerical and experimental study on granular   flow and heat characteristics of directly-irradiated fluidized bed reactor for solar gasification, International Journal of Hydrogen Energy, 43(34) 2018 p. 16443-16457
  • Rajhi, et al., Evaluation of gas radiation models in CFD modeling of oxy-combustion. Energy conversion and management, 2014. 81: p. 83-97.
  • Watanabe, Y. Suwa, Y. Matsushita, Y. Morozumi, H. Aoki, S. Tanno, Spray combustion simulation including  soot and NO formation, Energy Convers Manage;48 (2007) 2077–89.
  • Bidi, M. Nobari, M. Saffar, A numerical investigation of turbulent Premixed methane–air combustion in a cylindrical chamber, Combust Sci Technol, 179 (2007) 1841–65.
  • A. Chishty, M. Bolla, E. Hawkes, Y. Pei, S. Kook, Assessing the importance of radiative heat transfer for ECN Spray A using the transported PDF method, SAE International Journal of Fuels and Lubricants, 9(1) (2016) 100-107.‏
  • Siegel, J. R. Howell, Thermal Radiation  Heat  Transfer, Hemisphere  Publishing Corporation,Washington DC. 1992.
  • Cheng, Two-Dimensional Radiating Gas Flow by a Moment Method, AIAA Journal. 2. 1662–1664.
  • Pope, Combustion Modelling using Probability Density FunctionMethods, Numerical Approaches to Combustion Modelling, Prog. Astronaut.  Aeronaut, AIAA, 1991.
  • Morsi , A. Alexander , An investigation of particle  trajectories  in two-phase 208 systems,  Journal of Fluid   mechanics,  vol. 55, no. 2, pp. 193- 208,  1972.
  • K. Versteeg, W. Malalasekera, An introduction to computational fluid Dynamics: the finite volume method. Pearson education, 2007
  • -P.Mao, G. Szekely Jr, G. Faeth, Evaluation of a locally homogeneous model of spray combustion,    Journal of Energy, vol. 4, no. 2, pp.78-87, 1980.