Document Type : Review Paper

Author

Department of Chemical Engineering, College of Engineering, University of Babylon, Iraq

Abstract

This article provides an overview of the role of raw and burnt date pits as bio-waste for heavy metal removal. In recent years, many studies on the adsorption properties of various low-cost adsorbents, such as agricultural waste and activated carbons based on agricultural waste, have been published. This review summarizes recent research demonstrating the utility of raw and modified date pits biomass-based adsorbents in the removal of heavy metal pollutants from wastewater. Additionally, the chemical compositions, the derived activated carbon, and the proposed mechanism of heavy metal ions were discussed. It thoroughly showed how essential variables including pH, adsorbent dosage, initial metal ion concentration, physical and chemical properties, and temperature affect the adsorption of heavy metals. The significant application of date pits as a bio-adsorbent of heavy metal ions was demonstrated. According to the literature, date pit-based adsorbents are the most promising adsorbents for removing toxic materials because they adsorb heavy metals from aqueous solutions with high capacity in a short period.

Keywords

  • Barakat M.A., 2011, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem. 4 361–377, https://doi.org/10.1016/j.arabjc.2010.07.019.
  • Bhatnagar A.,Sillanpää M., 2010, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review, Chem Eng J, 157 277–296. https://doi:10.1016/j.cej.2010.01.007.
  • Mohammed Abdul K.S., Jayasinghe S.S., Chandana E.P.S., Jayasumana C., De Silva P.M.C.S., 2015, Arsenic and human health effects: A review, Environ Toxicol Pharmacol 40 828–846, https://doi.org/10.1016/j.etap.2015.09.016.
  • Naseem R., Tahir S.S., 2001, Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent, Water Res. 35 3982–3986, https://doi.org/10.1016/S0043-1354(01)00130-0.
  • Holmes P., James K.A.F., Levy L.S., 2009, Is low-level environmental mercury exposure of concern to human health? Sci. Total Environ. 408 171–182, https://doi.org/10.1016/j.scitotenv.2009.09.043.
  • Tizo M.S., Lou A.V., Blanco A.C., Cagas Q., Buenos R.B., Cruz D., Encoy J. C., Gunting J.V., Arazo R.O, Mabayo V.I.F., 2018, Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution, Sustain. Environ. Res. 28 326–332, https://doi.org/10.1016/j.serj.2018.09.002
  • Kumar P., Chauhan M.S., 2019, Adsorption of chromium (VI) from the synthetic aqueous solution using chemically modified dried water hyacinth roots, J. Environ. Chem. Eng. 7, 103218, https://doi.org/10.1016/j.jece.2019.103218.
  • Ihsanullah F.A., Al-Khaldi B., Abusharkh M., Khaled M.A., Atieh M.S., Nasser T., Laoui T.A., Saleh S., Agarwal I., Tyagi V.K., Gupta, 2015, Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents, J. Molecular. Liquids 204 255–263. https://doi.org/10.1016/j.molliq.2015.01.033
  • Demirbas A. (2008) Heavy metal adsorption onto agro-based waste materials: a review, J Hazard Mater 157 (2-3), 220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024.
  • Miretzky P., Cirelli A.F., 2010, Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review, J Hazard Mater 180(1-3):1–19. https://doi.org/10.1016/j.jhazmat.2010.04.060.
  • Kailash D., Dharmendra P., Vyas A., 2010, Low cost adsorbents for heavy metal removal from wastewater: a review, Research J Chemistry and Environment 14 (1):100–103.
  • Gupta S., Sharma S.K., Kumar A., 2019, Biosorption of Ni (II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder, Water Sci. Eng. 12 27–36, https://doi.org/10.1016/j.wse.2019.04.003.
  • Mohan D., Charles U., Pittman Jr., 2006, Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137:762–811.https://doi.org/10.1016/j.jhazmat.2006.06.060.
  • Gupta V.K., Carrott P.J.M., Ribeiro Carrott M.M.L., Suhas, 2009, Low cost adsorbents: growing approach to wastewater treatment‒a review, Critical Rev Environ Sci Technol 39(10):783–842.
  • https://doi.org/10.1080/10643380801977610.
  • Chao C.T. and Krueger R.R., The Date Palm (Phoenix dactylifera): Overview of Biology, Uses, and Cultivation, HortScience 42 (5) 2007.

doi.org/10.21273/HORTSCI.42.5.1077.

  • Gantait S., El-Dawayati M.M., Panigrahi J., Labrooy C., Verma S.K., The retrospect and prospect of the applications of biotechnology in Phoenix dactylifera , Applied Microbiology and Biotechnology 102 2018 8229–8259. https://doi.org/10.1007/s00253-018-9232-x
  • Ramawat K.G., Desert Plants Biology and Biotechnology, Springer-Verlag Berlin Heidelberg 2010.
  • Ahmad T., Danish M., Rafatullah M., Ghazali A., Sulaiman O., Hashim R., Ibrahim N.N.M., 2012, The use of date palm as a potential adsorbent for wastewater treatment: a review, Environ Sci Pollut Res 19 :1464–1484. https://doi.org/10.1007/s11356-011-0709-8.
  • Al-Kaabi, K., Al-Khanbashi, A. & Hammami, A., 2005, Date palm fibers as polymeric matrix reinforcement: DPF/polyester composite properties, Polymer Composites 26(5): 604-613. https://doi.org/10.1002/pc.20130.
  • Shafiq M., Alazba A.A., Amin M.T., 2018, Removal of Heavy Metals from Wastewater using Date Palm as a Biosorbent: A Comparative Review, Sains Malaysiana 47(1): 35–49. http://dx.doi.org/10.17576/jsm-2018-4701-05.
  • Hossain M.Z., Waly M.I., Singh V., Sequeira V., Rahman M.S., 2014, Chemical Compositions of Date-Pits and Its Potential for Developing Value-Added Product-a Review, J. Food Nutr. Sci. 2014;64(4):215–226. https://doi.org/10.2478/pjfns-2013-0018.
  • Barreveld W.H., 1993, Date palm products, FAO Agricultural Services Bulletin No. 101, Food and Agriculture Organization of the United Nations, Italy, Rome http://www.fao.org/docrep/t0681e/t0681e00.htm.
  • Al-Muhtaseb S.A., El-Naas M.H., Abdullah S., 2008, Removal of aluminum from aqueous solutions by adsorption on date-pit and BDH activated carbons. J Hazard Mater 158 (2-3):300–307. https://doi.org/10.1016/j.jhazmat.2008.01.080.
  • Bouchelta C., Medjram M.S., Bertrand O., Bellat J-P., 2008, Preparation and characterization of activated carbon from date stones by physical activation with steam. J Anal Appl Pyrolysis 82:70–77. https://doi.org/10.1016/j.jaap.2007.12.009.
  • Hilal N.M., Ahmed I.A., El-Sayed R.E,.2012, Activated and Nonactivated Date Pits Adsorbents for the Removal of Copper(II) and Cadmium(II) from Aqueous Solutions, Inter Scholarly Res Network, Volume 2012, Article ID 985853, https://doi:10.5402/2012/985853.
  • Samra S.E., Jeragh B., EL-Nokrashy A.M., El-Asmy A.A., 2014, Biosorption of Pb2+ from Natural Water using Date Pits: A Green Chemistry Approach, Modern Chemistry & Applications 2: 131. https://doi:10.4172/2329-6798.1000131.
  • Al-Saidi H.M., 2016, The fast recovery .of gold(III) ions from aqueous solutions using raw date pits: Kinetic, thermodynamic and equilibrium studies, J Saudi Chem Society 20(6). https://doi.org/10.1016/j.jscs.2013.06.002.
  • Khalil T.E., Altaher H., Abubeah R., 2016, Adsorptive Removal of Cu(II) Ions by Date Pits: Kinetic and Equilibrium Studies, Environ Eng and Manag J., 15(12), 2719-2732. http:// doiI:30638/eemj.2016.299.
  • Al-Saad K, El-Azazy M, Issa AA, Al-Yafie A, El-Shafie AS, Al-Sulaiti M and Shomar B., 2019, Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach. Front. Chem. 7:552. https://doi.org.10.3389/fchem.2019.00552.
  • Alghamdi A.A., Wastewater Treatment with Agriculture By-products: An Investigation with Date Pits powder, 16th Inter Conf Environ Sci and Tech, Rhodes, Greece, 4-7 Sept. 2019.
  • Maki A.A., Abdulnabi Z.A., Mahdi B.A., Al-Taee A.M.R., Al-Anber L.J.M., 2020, Removal of lead ion from industrial wastewater by using date palm seeds as a low-cost adsorbent, Mesopot. J. Mar. Sci., 35(2): 51 – 60.
  • Qiu B., Tao X., Wang H., Li W., Ding X., Chu H., 2021, Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review, J. Anal. Appl. Pyrolysis. 155, https://doi.org/10.1016/j.jaap.2021.105081.
  • Aguilar-Rosero J., Urbina-López M.E., Rodríguez-González B.E., León-Villegas S.X., Luna-Cruz I.E., Cárdenas-Chávez D.L., 2022, Development and Characterization of Bioadsorbents Derived from Different Agricultural Wastes for Water Reclamation: A Review, Applied Sciences 12, 2740. https://doi.org/10.3390/app12052740.
  • Girgis B.S., El-Hendawy A-NA., 2002, Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid, Microporous Mesoporous Mater 52 (92):105–117. https://doi.org/10.1016/S1387-1811(01)00481-4.
  • Alhamed Y.A., 2006, Activated carbon from date’s stone by ZnCl2 activation, JKAU Eng Sci 17 (2):75–100.
  • Haimour N.M., Emeish S., 2006, Utilization of date stones for production of activated carbon using phosphoric acid. Waste Management 26 (6): 651–660. https://doi.org/10.1016/j.wasman.2005.08.004.
  • El-Hendawy A-N.A., 2009, The role of surface chemistry and solution pH on the removal of Pb2+ and Cd2+ ions via effective adsorbents from low-cost biomass, J Hazard Mater 167 (1-3), 260–267. https://doi.org/10.1016/j.jhazmat.2008.12.118.
  • Mouni L., Merabet D., Bouzaza A., Belkhiri L., 2010, Removal of Pb2+ and Zn2+ from the aqueous solutions by activ-ated carbon prepared from date stones, Desalination Water Treat 16: 66–73. https://doi.org/10.5004/dwt.2010.1106
  • Awwad N.S., El-Zahhar A.A., Fouda A.M., Ibrahium H.A., 2013, Removal of heavy metal ions from ground and surface water samples using carbons derived from date pits, J Environ Chem Eng 1 416-423. http://dx.doi.org/10.1016/j.jece.2013.06.006.
  • Chaouchi N., Ouahran M.R., Laouin S.E.,, Adsorption of Lead (II) from Aqueous Solutions onto Activated Carbon Prepared from Algerian Dates Stones of Phoenix dactylifera L (Ghars variety) by H3PO4 Palm Date Pits as Low Cost Adsorbent, Inter J Eng Advanced Tech 3(5) 71-76.
  • Esmael A.I., Matta M.E., Halim H.A., Abdel Azziz F.M., 2014, Adsorption of Heavy Metals from Industrial Wastewater using Palm Date Pits as Low Cost Adsorbent, Inter J Eng Advanced Tech 3(5) 71-76.
  • Aldawsari A., Khan M.A., Hameed B.H., Alqadami A.A., Siddiqui M.R., Alothman Z.A., Ahmed Y. ,2017, Mercerized mesoporous date pit activated carbon- A novel adsorbent to sequester potentially toxic divalent heavy metals from water, PLoS ONE 12(9): e0184493. https://doi.org/10.1371/journal.pone.0184493.
  • Pal D.B., Singh A., Jha J.M., Srivastava N., Hashem A., Alakeel M.A., Abd_Allah E.F., Gupta V.K., Low-cost biochar adsorbents prepared from date and delonix regia seeds for heavy metal sorption, Bioresource Technology 339 (2021) 125606. https://doi.org/10.1016/j.biortech.2021.125606.
  • Aguilar-Rosero J., Urbina-López M.E., Rodríguez-González B.E., León-Villegas S.X., Luna-Cruz I.E., Cárdenas-Chávez D.L.,, Development and Characterization of Bioadsorbents Derived from Different Agricultural Wastes for Water Reclamation: A Review, Applied Science 2022, 12, 2740. https://doi.org/3390/app12052740.
  • Merzougui Z, Addoun F., 2008, Effect of oxidant treatment of date pit activated carbons application to the treatment of waters, Desalination 222:394–403. https://1016/j.desal.2007.01.134.
  • Belhachemi M., Rios R.V.R.A., Addoun F., Silvestre-Albero J., Sepulveda Escribano A., Rodrıguez-Reinoso F., 2009b, Preparation of activated carbon from date pits: effect of the activation agent and liquid phase oxidation. J Anal Appl Pyrolysis 86:168–172. https://doi:10.1016/j.jaap.2009.05.004.
  • Danish M., Hashim R., Rafatullah M., Sulaiman O., Ahmad A., Govind, 2011 Adsorption of Pb(II) ions from aqueous solutions by date bead carbon activated with ZnCl2, Clean: Soil Air Water 39:392–399. https://doi.org/10.1002/clen.201000185.
  • Bouhamed F., Elouear Z., Bouzid J., 2012, Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics, J Taiwan Inst Chem Eng 43 741–749.
  • Sekirifa M., Hadj-Mahammeda M., Pallier S., Baameur L., Richard D., Al-Dujaili A.H., 2013, Preparation and characterization of an activated carbon from a date stones variety by physical activation with carbon dioxide, J Anal Appl Pyrolysis 99 155–160. https://doi:10.1016/j.jaap.2012.10.007.
  • Mathew B.B., Jaishankar M., Biju, V.G.,, Beeregowda K.N., Role of Bioadsorbents in Reducing Toxic Metals, J. of Toxicology 2016, Article ID 4369604 http://dx.doi.org/10.1155/2016/4369604.
  • Shaheen S.M., Niazi N.K., Hassan N.E.E., Bibi I., Wang H., Tsang D.C.W., Ok Y.S., Bolan N., Rinklebe J., 2019, Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review, Int. Mater. Rev. 64, 216–247, https://doi.org/10.1080/09506608.2018.1473096.
  • Banat F., Al-Asheh S., Al-Rousan D., 2002, A Comparative study of copper and zinc ion adsorption on to activated and non-activated date-pits, Adsorption Science and Technology 20(4), 319–335. https://doi.org/10.1260/02636170260295515.
  • Al-Ghouti M.A., Li J., Salamh Y., Al-Laqtah N., Walker G., Ahmad M.N.M., 2010, Adsorption mechanisms of removing heavy metals and dye s from aqueous solution using date pits solid adsorbent. J Hazard Mater 176:510–520. https://doi.org/10.1016/j.jhazmat.2009.11.059.
  • Basu M., Guha A. K., Ray L., 2017, Adsorption of Lead on Cucumber Peel, J. Cleaner Production, 151 603–615, https://doi.org/10.1016/j.jclepro.2017.03.028
  • Huang D., Li B., Ou J., Xue W., Li J., Li Z., Li T., Chen S., Deng R., Guo X., 2020, Megamerger of biosorbents and catalytic technologies for the removal of heavy metals from wastewater: Preparation, final disposal, mechanism and influencing factors, Environ. Manage. 261, 109879, https://doi.org/10.1016/j.jenvman.2019.109879.
  • Liu Y., Xu J., Cao Z., Fu R., Zhou C., Wang Z., Xu X., 2020, Adsorption behavior and mechanism of Pb(II) and complex Cu(II) species by biowaste-derived char with amino functionalization, J. Colloid Interface Sci. 559: 215–225. https://doi.org/10.1016/j.jcis.2019.10.035.
  • Kosmulski M., pH-dependent surface charging and points of zero charge II. Update, J. of Colloid and Interface Science, 275 (2004) 214–224.
  • Tan G., Yuan H., Lio Y., Xiao D., 2010, Removal of lead from aqueous solution with native and chemically modified corncobs, J Hazard Mater 174 (1-3) 740-745. https://doi.org/10.1016/j.jhazmat.2009.09.114.
  • Vimala R., Das N, 2009, Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study, J Hazard Mater 168(1): 376-382. https://doi.org/10.1016/j.jhazmat.2009.02.062.
  • Joseph L., Jun B-M,.Flora J.R.V, Park C.M., Yoon Y., 2019, Removal of heavy metals from water sources in the developing world using low-cost materials: A review, Chemosphere 229 142-159. https://doi.org/10.1016/j.chemosphere.2019.04.198.
  • Rezgui A., Guibal E., and Boubakera T., 2017, Sorption of Hg (II) and Zn (II) ions using lignocellulosic sorbent (date pits), Canadian J Chem Eng 95(4) 775-782. https://doi.10.1002/cjce.22728.
  • l Nemr A., Khaled A., Abdelwahab O., El-Sikaily A. 2008 Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed, J Hazard Mater 152 (1), 263–275. https://doi.org/10.1016/j.jhazmat.2007.06.091.
  • Yadav S.K., Sinha S. and Singh D.K., 2015, Chromium(VI) removal from aqueous solution and industrial wastewater by modified date palm trunk, Environ Progr & Sustain Energy 34(2): 452-460. https://doi.org/10.1002/ep.12014.
  • Abd-Talib N, Chuong C.S., Mohd-Setapar S.H., Asli U.A., Pa’ee K.F., c, Tau LenY., Trends in Adsorption Mechanisms of Fruit Peel Adsorbents to Remove Wastewater Pollutants (Cu (II), Cd (II) and Pb (II)), J. of Water and Environment Technology, 18 5: 290–313, 2020.
  • Pandharipande S.and Kalnake R., 2013, Tamarind Fruit Shell Adsorbent Synthesis, Characterization and Adsorption Studies for Removal of Cr(VI) & Ni(II) Ions from Aqueous Solution, Inter J Eng Sci & Emerg Tech, 4 (2) 83-89.
  • Bazzazzadeh R., Soudi M.R., Valinassab T., Moradlou O., 2020, Kinetics and equilibrium studies on biosorption of hexavalent chromium from leather tanning wastewater by Sargassum tentorium from Chabahar-Bay Iran, Algal Res. 48, 101896, https://doi.org/10.1016/j.algal.2020.101896.
  • Amin, M.T., Alazba, A.A. & Shafiq, M., 2016, Adsorption of copper (Cu2+) from aqueous solution using date palm trunk fiber: Isotherms and kinetics, Desalination and Water Treatment 57(47): 22454-22466. https://doi.org/10.1080/19443994.2015.1131635.
  • Ebrahimi, R., Maleki, A., Shahmoradi, B., Daraei, H., Mahvi, A.H., Barati, A.H. & Eslami, A., 2013 Elimination of arsenic contamination from water using chemically modified wheat straw, Desalination, and Water Treatment 51(10-12): 2306-2316. https://doi.org/10.1080/19443994.2012.734675.
  • Ghorbani, F., Sanati, A.M., Younesi, H. & Ghoreyshi, A.A., 2012, The potential of date palm leaf ash as a low-cost adsorbent for the removal of PB(II) ion from aqueous solution, International Journal of Engineering - Transactions B: Applications 25(4): 278-296.
  • Bilal M., Ihsanullah I., Younas M., Hassan Shah M.U., 2022, Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review, Separation, and Purification Tech 278 119510. https://doi.org/10.1016/j.seppur.2021.119510.
  • Mohamed A.A.J., Vuai L.A., Kombo M., Chukwuma O.J., 2019, Removal of selected metal ions using powder of seeds of Ajwaa dates from aqueous solution, J Anal Pharm Res, 8(6). https://doi.10.15406/japlr.2019.08.00343.
  • Al-Ghamdi , Altaher H. & Omar  W., 2013, Application of date palm trunk fibers as adsorbents for removal of Cd+2 ions from aqueous solutions. J Water Reuse and Desal 3(1): 47-54. https://doi.org/10.2166/wrd.2013.031.
  • Hikmat N.A., Qassim B.B., Khethi M.T., 2014, Thermodynamic and kinetic studies of lead adsorption from aqueous solution onto petiole and fiber of palm tree, American Journal of Chemistry 4(4): 116-124. https://doi:10.5923/j.chemistry.20140404.02.
  • Hamouche A., BoureghdaZ., Babci H., Louhab K., 2012, Kinetics and thermodynamics of Cr ions sorption on mixed sorbents prepared from olive stone and date pit from aqueous solution, Res J of Chem and Environ 16(4): 174-181. http://dlibrary.univ-boumerdes.dz:8080123456789/1605.
  • Belala Z., Jeguirim M., Belhachemi M., Addoun F., Trouve G., 2011 Biosorption of copper from aqueous solutions by date stones and palm-trees waste. Environ Chem Lett 9:65–69. https://doi:1007/s10311-009-0247-5.
  • Almendros A.I., Martín-Lara M.A., Ronda A., Perez A., Bl´azquez G., Calero M., 2015, Physico-chemical characterization of pine cone shell and its use as biosorbent and fuel, Bioresources Technology 196 406‒412. https://doi.org/10.1016/j.biortech.2015.07.109.
  • Pathirana C., Ziyath A.M., Jinadasa K., Egodawatta P., Goonetilleke A., 2020, Mathematical modelling of the influence of physico-chemical properties on heavy metal adsorption by biosorbents, Chemosphere, 255: 126965, https://doi.org/10.1016/j.chemosphere.2020.126965.
  • Shakoor M.B., Niazi N.K., Bibi I., Shahid M., Saqib Z.A., Nawaz M.F., Shaheen S.M., Wang H., Tsang D.C., Bundschuh J., Ok Y.S., 2019, Exploring the arsenic removal potential of various biosorbents from water, Environment Inter. 123 567–579, https://doi.org/10.1016/j.envint.2018.12.049.
  • Matouq M., Jildeh N., Qtaishat M., Hindiyeh M., Al Syouf M.Q., 2015, The adsorption of kinetics and modeling for heavy metals removal from wastewater by Moringa pods, J. Environ Chem. Eng. 3 775–784, https://doi.org/10.1016/j.jece.2015.03.027.
  • Azam, M.,Wabaidur S.M., Khan M.R.; Al-Resayes S.I., Islam M.S. , 2022, Heavy Metal Ions Removal from Aqueous Solutions by Treated Ajwa Date Pits: Kinetic, Isotherm, and Thermodynamic Approach, Polymers, 14, 914. https://doi.org/10.3390/polym14050914.
  • Danish M.., Hashim R., Mohamad Ibrahim M.N., Rafatullah M.., Sulaiman O., Ahmad T., Shamsuzzoha M., Ahmad A., 2011 Sorption of copper (II) and nickel (II) ions from aqueous solutions using calcium oxide activated date stone: equilibrium, kinetic and thermodynamic studies, J Chem Eng Data 56 (9), 3607–3619. https://doi.org/10.1021/je200460n.
  • Krishnamoorthy R., Govindan B., Banat F., Sagadevan V., Purushothaman M., and Show P.L., 2019, Date pits activated carbon for divalent lead ions removal, J Bioscience and Bioengineering 128(1). https://doi.org/10.1016/j.jbiosc.2018.12.011.
  • Alhamzani A. G., 2021, Using of Sukary and Khlass Date Pits as Bio-adsorbents for Adsorption of Lead and Copper Ions from Waste Water, Orient J Chem 37(2). http://dx.doi.org/10.13005/ojc/370206.
  • Al-Onazi W.A., Ali M.H.H., Al-Garni T., 2021, Using Pomegranate Peel and Date Pit Activated Carbon for the Removal of Cadmium and Lead Ions from Aqueous Solution, J. of chem, Article ID 5514118. https://doi.org/10.1155/2021/5514118.
  • Azam, M., Wabaidur S.M., Khan, M.R., Al-Resayes, S.I., Islam M.S., 2021, Removal of Chromium(III) and Cadmium(II) Heavy Metal Ions from Aqueous Solutions Using Treated Date Seeds: An Eco-Friendly Method. Molecules, 26, 3718. https://doi.org/10.3390/molecules26123718.
  • Mangwandi C., Kurniawan T.A., Albadarin A.B., 2020, Comparative biosorption of chromium (VI) using chemically modified date pits (CM-DP) and olive stone (CM-OS): Kinetics, isotherms, and influence of co-existing ions, Chem Eng Res and Design 156: 251-262. https://doi.org/10.1016/j.cherd.2020.01.034.
  • Mahdi Z., Yu J., and El Hanandeh A., 2019, Competitive adsorption of heavy metal ions (Pb2+, Cu2+, and Ni2+) onto date seed biochar: batch and fixed bed experiments, Separation Science and Technology 54(6). https://doi.org/10.1080/01496395.2018.1523192.
  • Mahdi Z., Yu J., and El Hanandeh A., 2018, Removal of lead(II) from aqueous solution using date seed‑derived biochar: batch and column studies, Applied Water Science 8:181.https://doi.org/10.1007/s13201-018-0829-0.
  • Khelaifia F.Z., Hazourli S., Nouacer S., Rahima H., Ziati ZiatiM., 2016, Valorization of raw biomaterial waste-date stones-for Cr (VI) adsorption in aqueous solution: Thermodynamics, kinetics, and regeneration studies, Inter Biodeterio Biodegrad 114 76-86. http://dx.doi.org/10.1016/j.ibiod.2016.06.002.
  • Banat F., Al-Asheh S., Al-Makhadmeh L., 2003, Kinetics and equilibrium study of cadmium ion sorption onto date pits‒an agricultural waste, Adsorption Science and Technology 21(3), 245–260. https://doi.org/10.1260/026361703322404395.
  • Abdulkarim M., Al-Rub F.A., 2004, Adsorption of lead ions from aqueous solution onto activated carbon and chemically-modified activated carbon prepared from date pits, Adsorption Science and Technology 22(4), 119–134. https://doi.org/10.1260/026361704323150908.
  • Iraqi Environmental Standards (2011). Contract No.: W3QR-50-M074, Rev. No.: