Document Type : Research Paper

Authors

Department of Metallurgical Engineering, Materials Engineering College, University of Babylon, Babylon, Iraq.

10.30772/qjes.2024.151081.1280

Abstract

The performance of functionally graded materials is much better than materials with unchanged properties and compositions. Al-Cr-Fe alloys with different Cr concentrations were proposed for this work. Potential applications for these materials include automotive pistons. FGM was fabricated by a successive stage of the sequential casting method with mechanical vibration during the solidification. The FGM sample consists of two alloys with different chemical compositions (Al-8Si-2Fe) and (Al-2Cr-2Fe). Two types of samples were studied and compared, with and without mold vibration. The method of mechanical mold vibration, which in turn reduces the segregation and pores in the cast and refines the microstructure. The results of the XRD showed the presence of α-Al phase,  Al₈₀Cr₁₃.₅Fe₆.₅, Al₁₃Cr₂, and Al₁₃Fe₄ compounds that enhance the strength of the alloy.  Optical microscope images showed a difference in the microstructure at both sides of the interface between the two alloys. There is variation in the hardness values ​​due to the difference in the chemical composition of the alloys. The recorded improvement in the tensile strength was 17%, and a decrease in Compression by 1.5%.

Keywords

  • Botero, C., Koptyug, A., Sjöström, W., Jiménez-Piqué, E., Şelte, A., & Rännar, L. E. Functionally Graded Steels Obtained via Electron Beam Powder Bed Fusion. Key Engineering Materials, 964, 79-84 (2023). https://doi.org/10.4028/p-xaC6qO
  • Młynarek-Żak, K., Pakieła, W., Łukowiec, D., Bajorek, A., Gębara, P., Szakál, A. & Babilas, R. Structure and selected properties of Al–Cr–Fe alloys with the presence of structurally complex alloy phases. Scientific Reports, 12, 14194 (2022).‏https://doi.org/10.1038/s41598-022-17870-0
  • Li, R., Yu, W., Zhang, Y., Li, C., Qu, Y., Nie, S., ... & Yu, B. Effect of phase proportion on wear behavior of Al–Cr–Fe–Ni dual-phase high entropy alloys. Metallography, Microstructure, and Analysis, 10, 106-115 (2021). https://doi.org/ 10.1007/s13632-020-00709-3
  • Yang, S., Lu, J., Xing, F., Zhang, L., & Zhong, Y. Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput CALPHAD approach and its applications for material design-A case study with Al–Co–Cr–Fe–Ni system. Acta Materialia, 192, 11-19 (2020). https://doi.org/10.1016/j.actamat.2020.03.039
  • Ribeiro, T. M., Catellan, E., Garcia, A., & dos Santos, C. A. The effects of Cr addition on microstructure, hardness and tensile properties of as-cast Al–3.8 wt.% Cu–(Cr) alloys. Journal of Materials Research and Technology, 9(3), 6620-6631 (2020). ‏https://doi.org/ 10.1016/j.jmrt.2020.04.054
  •  Koller, C. M., Kirnbauer, A., Hahn, R., Widrig, B., Kolozsvári, S., Ramm, J., & Mayrhofer, P. H. Oxidation behavior of intermetallic Al-Cr and Al-Cr-Fe macroparticles. Journal of Vacuum Science & Technology A, 35(6) (2017). https://doi.org/10.2139/ssrn.4705444
  • de Araujo, A. P., Micheloti, L., Kiminami, C. S., & Gargarella, P. Microstructure, phase formation and properties of rapid solidified Al–Fe–Cr–Ti alloys. Materials Science and Technology, 36(11), 1205-1214 (2020). https://doi.org/10.1080/02670836.2020.1763555
  • Švecová, I., Tillová, E., Kuchariková, L., & Knap, V. Possibilities of predicting undesirable iron intermetallic phases in secondary Al-alloys. Transportation Research Procedia, 55, 797-804 (2021). https://doi.org/10.3390/electronicmat3010001
  • Fracchia, E., Lombardo, S., & Rosso, M. Case study of a functionally graded aluminum part. Applied Sciences, 8(7), 1113(2018). https://doi.org/ 10.3390/app8071113
  • Fracchia, E., Gobber, F. S., Rosso, M., Actis Grande, M., Bidulská, J., & Bidulský, R. Junction characterization in a functionally graded aluminum part. Materials, 12(21), 3475 (2019). https://doi.org/10.3390/ma12213475
  • G Gao, T., Li, Z., Zhang, Y., Qin, J., & Liu, X. Phase evolution of β-Al 5 FeSi during recycling of Al–Si–Fe alloys by Mg melt. International Journal of Metalcasting, 13, 473-478 (2019). https://doi.org/10.1007/s40962-018-0279-3
  • Wang, J., Liu, S., Bai, X., Zhou, X., & Han, X. Oxidation behavior of Fe–Al–Cr alloy at high temperature: Experiment and a first principle study. Vacuum, 173, 109144 (2020). https://doi.org/10.1016/j.vacuum.2019.109144
  • Galano, M., Audebert, F., Escorial, A. G., Stone, I. C., & Cantor, B. Nanoquasicrystalline Al–Fe–Cr-based alloys. Part II. Mechanical properties. Acta materialia, 57(17), 5120-5130 (2009).‏ https://doi.org/10.1016/j.actamat.2009.07.009
  • Que, Z., Wang, Y., Mendis, C. L., Fang, C., Xia, J., Zhou, X., & Fan, Z. Understanding Fe-containing intermetallic compounds in Al alloys: an overview of recent advances from the LiME research hub. Metals, 12(10), 1677 (2022). https://doi.org/10.3390/met12101677
  • Gao, T., Li, Z., Zhang, Y., Qin, J., & Liu, X. Phase evolution of β-Al 5 FeSi during recycling of Al–Si–Fe alloys by Mg melt. International Journal of Metalcasting, 13, 473-478 (2019)‏. https://doi.org/10.1007/s40962-018-0279-3
  • Sheshukov, O. Y., & Kataev, V. V. Influence of Titanium and Zirconium on the Structure and Heat-Resistance of Low-Carbon Iron–Aluminum Alloys. Steel in Translation, 51, 621-626 (2021). https://doi.org/10.1179/174328407X168766
  • Chen, H. Z., Li, B. R., Wen, B., Ye, Q., & Zhang, N. Q. Corrosion behaviours of iron-chromium-aluminium steel near the melting point of various eutectic salts. Solar Energy Materials and Solar Cells, 210, 110510 (2020). https://doi.org/10.1016/j.solmat.2020.110510
  • Behrens, B. A., Brunotte, K., Petersen, T., & Relge, R. Investigation on the Microstructure of ECAP-Processed Iron-Aluminium Alloys. Materials, 14(1), 219 (2021). jhttps://doi.org/10.3390/ma14010219
  • Siekaniec, D., Kopyciński, D., Tyrała, E., Guzik, E., & Szczęsny, A. Optimisation of solidification structure and properties of hypoeutectic chromium cast iron. Materials, 15(18), 6243 (2022). https://doi.org/10.3390/ma15186243
  • Babilas, R., Bajorek, A., Spilka, M., Radoń, A., & Łoński, W. Structure and corrosion resistance of Al–Cu–Fe alloys. Progress in Natural Science: Materials International, 30(3), 393-401 (2020). https://doi.org/10.1016/j.pnsc.2020.06.002
  • Pérez-Prado, M. T., Martin, A., Shi, D. F., Milenkovic, S., & Cepeda-Jiménez, C. M. An Al-5Fe-6Cr alloy with outstanding high temperature mechanical behavior by laser powder bed fusion. Additive Manufacturing, 55, 102828(2022). https://doi.org/ 10.1016/j.addma.2022.102828
  • Koller, C. M., Kirnbauer, A., Dalbauer, V., Kolozsvári, S., Ramm, J., & Mayrhofer, P. H. On the oxidation behavior of cathodic arc evaporated Al-Cr-Fe and Al-Cr-Fe-O coatings. I. Journal of Vacuum Science & Technology A, 37(4) (2019).‏ https://doi.org/ 10.1116/1.5099123
  • Sourani, F., Enayati, M. H., & Ngan, A. H. W. On the in situ synthesis of (Fe, Cr) Al and (Fe, Cr) Al–Al2O3 nanostructured materials. Materials Research Express, 6(8), 0850c9(2019). https://doi.org/ 10.1088/2053-1591/ab24f5
  • Skorodzievskii, V. S., Ustinov, A. I., Polishchuk, S. S., Demchenkov, S. A., & Telychko, V. O. Dissipative properties of Al-(Fe, Cr) vacuum coatings with different composite structures. Surface and Coatings Technology, 367, 179-186(2019). https://doi.org/ 10.1016/j.surfcoat.2019.03.074
  • Muneer, B. A. I. G., Ammar, H. R., Seikh, A. H., Mohammed, J. A., Fahad, A. M., & Alaboodi, A. Thermal stability of nanocrystalline Al− 10Fe− 5Cr bulk alloy. Transactions of Nonferrous Metals Society of China, 29(2), 242-252(2019).‏ https://doi.org/ 10.1016/S1003-6326(16)64128-6
  • Shockner, R., Edry, I., Pinkas, M., & Meshi, L. Systematic study of the effect of Cr on the microstructure, phase content and hardness of the AlCrxFeCoNi alloys. Journal of Alloys and Compounds, 940, 168897(2023). https://doi.org/ 10.1116/1.5099123
  • Shi, H., Jianu, A., Fetzer, R., Szabo, D. V., Schlabach, S., Weisenburger, A.,   & Mueller, G. Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead. Corrosion Science, 189, 109593(2021). https://doi.org/10.1016/j.corsci.2021.109593